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Preface and Dedication 
The favorable reception of Portfolio Management Formulas exceeded even the greatest expectation I ever had for the book. I had written it to 

promote the concept of optimal f and begin to immerse readers in portfolio theory and its missing relationship with optimal f. 
Besides finding friends out there, Portfolio Management Formulas was surprisingly met by quite an appetite for the math concerning money 

management. Hence this book. I am indebted to Karl Weber, Wendy Grau, and others at John Wiley & Sons who allowed me the necessary latitude 
this book required. 

There are many others with whom I have corresponded in one sort or another, or who in one way or another have contributed to, helped me with, 
or influenced the material in this book. Among them are Florence Bobeck, Hugo Rourdssa, Joe Bristor, Simon Davis, Richard Firestone, Fred Gehm 
(whom I had the good fortune of working with for awhile), Monique Mason, Gordon Nichols, and Mike Pascaul. I also wish to thank Fran Bartlett of 
G & H Soho, whose masterful work has once again transformed my little mountain of chaos, my little truckload of kindling, into the finished product 
that you now hold in your hands. 

This list is nowhere near complete as there are many others who, to varying degrees, influenced this book in one form or another. 
This book has left me utterly drained, and I intend it to be my last. 
Considering this, I'd like to dedicate it to the three people who have influenced me the most. To Rejeanne, my mother, for teaching me to appre-

ciate a vivid imagination; to Larry, my father, for showing me at an early age how to squeeze numbers to make them jump; to Arlene, my wife, part-
ner, and best friend. This book is for all three of you. Your influences resonate throughout it. 

Chagrin Falls, Ohio R. V. 
March 1992 
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Introduction 

SCOPE OF THIS BOOK 
I wrote in the first sentence of the Preface of Portfolio Management 

Formulas, the forerunner to this book, that it was a book about mathe-
matical tools. 

This is a book about machines. 
Here, we will take tools and build bigger, more elaborate, more 

powerful tools-machines, where the whole is greater than the sum of the 
parts. We will try to dissect machines that would otherwise be black 
boxes in such a way that we can understand them completely without 
having to cover all of the related subjects (which would have made this 
book impossible). For instance, a discourse on how to build a jet engine 
can be very detailed without having to teach you chemistry so that you 
know how jet fuel works. Likewise with this book, which relies quite 
heavily on many areas, particularly statistics, and touches on calculus. I 
am not trying to teach mathematics here, aside from that necessary to 
understand the text. However, I have tried to write this book so that if 
you understand calculus (or statistics) it will make sense and if you do 
not there will be little, if any, loss of continuity, and you will still be 
able to utilize and understand (for the most part) the material covered 
without feeling lost. 

Certain mathematical functions are called upon from time to time in 
statistics. These functions-which include the gamma and incomplete 
gamma functions, as well as the beta and incomplete beta functions-are 
often called functions of mathematical physics and reside just beyond 
the perimeter of the material in this text. To cover them in the depth 
necessary to do the reader justice is beyond the scope, and away from 
the direction of, this book. This is a book about account management for 
traders, not mathematical physics, remember? For those truly interested 
in knowing the "chemistry of the jet fuel" I suggest Numerical Recipes, 
which is referred to in the Bibliography. 

I have tried to cover my material as deeply as possible considering 
that you do not have to know calculus or functions of mathematical 
physics to be a good trader or money manager. It is my opinion that 
there isn't much correlation between intelligence and making money in 
the markets. By this I do not mean that the dumber you are the better I 
think your chances of success in the markets are. I mean that intelli-
gence alone is but a very small input to the equation of what makes a 
good trader. In terms of what input makes a good trader, I think that 
mental toughness and discipline far outweigh intelligence. Every suc-
cessful trader I have ever met or heard about has had at least one experi-
ence of a cataclysmic loss. The common denominator, it seems, the 
characteristic that separates a good trader from the others, is that the 
good trader picks up the phone and puts in the order when things are at 
their bleakest. This requires a lot more from an individual than calculus 
or statistics can teach a person. 

In short, I have written this as a book to be utilized by traders in the 
real-world marketplace. I am not an academic. My interest is in real-
world utility before academic pureness. 

Furthermore, I have tried to supply the reader with more basic in-
formation than the text requires in hopes that the reader will pursue 
concepts farther than I have here. 

One thing I have always been intrigued by is the architecture of mu-
sic -music theory. I enjoy reading and learning about it. Yet I am not a 
musician. To be a musician requires a certain discipline that simply 
understanding the rudiments of music theory cannot bestow. Likewise 
with trading. Money management may be the core of a sound trading 
program, but simply understanding money management will not make 
you a successful trader. 

This is a book about music theory, not a how-to book about playing 
an instrument. Likewise, this is not a book about beating the markets, 
and you won't find a single price chart in this book. Rather it is a book 
about mathematical concepts, taking that important step from theory to 
application, that you can employ. It will not bestow on you the ability to 
tolerate the emotional pain that trading inevitably has in store for you, 
win or lose. 

This book is not a sequel to Portfolio Management Formulas. 
Rather, Portfolio Management Formulas laid the foundations for what 
will be covered here. 

Readers will find this book to be more abstruse than its forerunner. 
Hence, this is not a book for beginners. Many readers of this text will 
have read Portfolio Management Formulas. For those who have not, 
Chapter 1 of this book summarizes, in broad strokes, the basic concepts 
from Portfolio Management Formulas. Including these basic concepts 
allows this book to "stand alone" from Portfolio Management Formu-
las. 

Many of the ideas covered in this book are already in practice by 
professional money managers. However, the ideas that are widespread 
among professional money managers are not usually readily available to 
the investing public. Because money is involved, everyone seems to be 
very secretive about portfolio techniques. Finding out information in 
this regard is like trying to find out information about atom bombs. I am 
indebted to numerous librarians who helped me through many mazes of 
professional journals to fill in many of the gaps in putting this book 
together. 

This book does not require that you utilize a mechanical, objective 
trading system in order to employ the tools to be described herein. In 
other words, someone who uses Elliott Wave for making trading deci-
sions, for example, can now employ optimal f. 

However, the techniques described in this book, like those in Port-
folio Management Formulas, require that the sum of your bets be a 
positive result. In other words, these techniques will do a lot for you, but 
they will not perform miracles. Shuffling money cannot turn losses into 
profits. You must have a winning approach to start with. 

Most of the techniques advocated in this text are techniques that are 
advantageous to you in the long run. Throughout the text you will en-
counter the term "an asymptotic sense" to mean the eventual outcome of 
something performed an infinite number of times, whose probability 
approaches certainty as the number of trials continues. In other words, 
something we can be nearly certain of in the long run. The root of this 
expression is the mathematical term "asymptote," which is a straight line 
considered as a limit to a curved line in the sense that the distance be-
tween a moving point on the curved line and the straight line approaches 
zero as the point moves an infinite distance from the origin. 

Trading is never an easy game. When people study these concepts, 
they often get a false feeling of power. I say false because people tend to 
get the impression that something very difficult to do is easy when they 
understand the mechanics of what they must do. As you go through this 
text, bear in mind that there is nothing in this text that will make you a 
better trader, nothing that will improve your timing of entry and exit 
from a given market, nothing that will improve your trade selection. 
These difficult exercises will still be difficult exercises even after you 
have finished and comprehended this book. 

Since the publication of Portfolio Management Formulas I have 
been asked by some people why I chose to write a book in the first 
place. The argument usually has something to do with the marketplace 
being a competitive arena, and writing a book, in their view, is analo-
gous to educating your adversaries. 

The markets are vast. Very few people seem to realize how huge to-
day's markets are. True, the markets are a zero sum game (at best), but 
as a result of their enormity you, the reader, are not my adversary. 

Like most traders, I myself am most often my own biggest enemy. 
This is not only true in my endeavors in and around the markets, but in 
life in general. Other traders do not pose anywhere near the threat to me 
that I myself do. I do not think that I am alone in this. I think most trad-
ers, like myself, are their own worst enemies. 

In the mid 1980s, as the microcomputer was fast becoming the pri-
mary tool for traders, there was an abundance of trading programs that 
entered a position on a stop order, and the placement of these entry stops 
was often a function of the current volatility in a given market. These 
systems worked beautifully for a time. Then, near the end of the decade, 
these types of systems seemed to collapse. At best, they were able to 
carve out only a small fraction of the profits that these systems had just 
a few years earlier. Most traders of such systems would later abandon 
them, claiming that if "everyone was trading them, how could they work 
anymore?" 

Most of these systems traded the Treasury Bond futures market. 
Consider now the size of the cash market underlying this futures market. 
Arbitrageurs in these markets will come in when the prices of the cash 
and futures diverge by an appropriate amount (usually not more than a 
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few ticks), buying the less expensive of the two instruments and selling 
the more expensive. As a result, the divergence between the price of 
cash and futures will dissipate in short order. The only time that the 
relationship between cash and futures can really get out of line is when 
an exogenous shock, such as some sort of news event, drives prices to 
diverge farther than the arbitrage process ordinarily would allow for. 
Such disruptions are usually very short-lived and rather rare. An arbitra-
geur capitalizes on price discrepancies, one type of which is the rela-
tionship of a futures contract to its underlying cash instrument. As a 
result of this process, the Treasury Bond futures market is intrinsically 
tied to the enormous cash Treasury market. The futures market reflects, 
at least to within a few ticks, what's going on in the gigantic cash mar-
ket. The cash market is not, and never has been, dominated by systems 
traders. Quite the contrary. 

Returning now to our argument, it is rather inconceivable that the 
traders in the cash market all started trading the same types of systems 
as those who were making money in the futures market at that time! Nor 
is it any more conceivable that these cash participants decided to all 
gang up on those who were profiteering in the futures market, There is 
no valid reason why these systems should have stopped working, or 
stopped working as well as they had, simply because many futures trad-
ers were trading them. That argument would also suggest that a large 
participant in a very thin market be doomed to the same failure as trad-
ers of these systems in the bonds were. Likewise, it is silly to believe 
that all of the fat will be cut out of the markets just because I write a 
book on account management concepts. 

Cutting the fat out of the market requires more than an understand-
ing of money management concepts. It requires discipline to tolerate and 
endure emotional pain to a level that 19 out of 20 people cannot bear. 
This you will not learn in this book or any other. Anyone who claims to 
be intrigued by the "intellectual challenge of the markets" is not a trader. 
The markets are as intellectually challenging as a fistfight. In that light, 
the best advice I know of is to always cover your chin and jab on the 
run. Whether you win or lose, there are significant beatings along the 
way. But there is really very little to the markets in the way of an intel-
lectual challenge. Ultimately, trading is an exercise in self-mastery and 
endurance. This book attempts to detail the strategy of the fistfight. As 
such, this book is of use only to someone who already possesses the 
necessary mental toughness. 

SOME PREVALENT MISCONCEPTIONS 
You will come face to face with many prevalent misconceptions in 

this text. Among these are: 
− Potential gain to potential risk is a straight-line function. That is, the 
more you risk, the more you stand to gain. 
− Where you are on the spectrum of risk depends on the type of vehicle 
you are trading in. 
− Diversification reduces drawdowns (it can do this, but only to a very 
minor extent-much less than most traders realize). 
− Price behaves in a rational manner. 

The last of these misconceptions, that price behaves in a rational 
manner, is probably the least understood of all, considering how devas-
tating its effects can be. By "rational manner" is meant that when a trade 
occurs at a certain price, you can be certain that price will proceed in an 
orderly fashion to the next tick, whether up or down-that is, if a price is 
making a move from one point to the next, it will trade at every point in 
between. Most people are vaguely aware that price does not behave this 
way, yet most people develop trading methodologies that assume that 
price does act in this orderly fashion. 

But price is a synthetic perceived value, and therefore does not act 
in such a rational manner. Price can make very large leaps at times when 
proceeding from one price to the next, completely bypassing all prices 
in between. Price is capable of making gigantic leaps, and far more fre-
quently than most traders believe. To be on the wrong side of such a 
move can be a devastating experience, completely wiping out a trader. 

Why bring up this point here? Because the foundation of any effec-
tive gaming strategy (and money management is, in the final analysis, a 
gaming strategy) is to hope for the best but prepare for the worst. 

WORST-CASE SCENARIOS AND STATEGY 
The "hope for the best" part is pretty easy to handle. Preparing for 

the worst is quite difficult and something most traders never do. Prepar-
ing for the worst, whether in trading or anything else, is something most 
of us put off indefinitely. This is particularly easy to do when we con-
sider that worst-case scenarios usually have rather remote probabilities 
of occurrence. Yet preparing for the worst-case scenario is something 
we must do now. If we are to be prepared for the worst, we must do it as 
the starting point in our money management strategy. 

You will see as you proceed through this text that we always build a 
strategy from a worst-case scenario. We always start with a worst case 
and incorporate it into a mathematical technique to take advantage of 
situations that include the realization of the worst case. 

Finally, you must consider this next axiom. If you play a game with 
unlimited liability, you will go broke with a probability that ap-
proaches certainty as the length of the game approaches infinity. Not a 
very pleasant prospect. The situation can be better understood by saying 
that if you can only die by being struck by lightning, eventually you will 
die by being struck by lightning. Simple. If you trade a vehicle with 
unlimited liability (such as futures), you will eventually experience a 
loss of such magnitude as to lose everything you have. 

Granted, the probabilities of being struck by lightning are extremely 
small for you today and extremely small for you for the next fifty years. 
However, the probability exists, and if you were to live long enough, 
eventually this microscopic probability would see realization. Likewise, 
the probability of experiencing a cataclysmic loss on a position today 
may be extremely small (but far greater than being struck by lightning 
today). Yet if you trade long enough, eventually this probability, too, 
would be realized. 

There are three possible courses of action you can take. One is to 
trade only vehicles where the liability is limited (such as long options). 
The second is not to trade for an infinitely long period of time. Most 
traders will die before they see the cataclysmic loss manifest itself (or 
before they get hit by lightning). The probability of an enormous win-
ning trade exists, too, and one of the nice things about winning in trad-
ing is that you don't have to have the gigantic winning trade. Many 
smaller wins will suffice. Therefore, if you aren't going to trade in lim-
ited liability vehicles and you aren't going to die, make up your mind 
that you are going to quit trading unlimited liability vehicles altogether 
if and when your account equity reaches some prespecified goal. If and 
when you achieve that goal, get out and don't ever come back. 

We've been discussing worst-case scenarios and how to avoid, or at 
least reduce the probabilities of, their occurrence. However, this has not 
truly prepared us for their occurrence, and we must prepare for the 
worst. For now, consider that today you had that cataclysmic loss. Your 
account has been tapped out. The brokerage firm wants to know what 
you're going to do about that big fat debit in your account. You weren't 
expecting this to happen today. No one who ever experiences this ever 
does expect it. 

Take some time and try to imagine how you are going to feel in 
such a situation. Next, try to determine what you will do in such an in-
stance. Now write down on a sheet of paper exactly what you will do, 
who you can call for legal help, and so on. Make it as definitive as pos-
sible. Do it now so that if it happens you'll know what to do without 
having to think about these matters. Are there arrangements you can 
make now to protect yourself before this possible cataclysmic loss? Are 
you sure you wouldn't rather be trading a vehicle with limited liability? 
If you're going to trade a vehicle with unlimited liability, at what point 
on the upside will you stop? Write down what that level of profit is. 
Don't just read this and then keep plowing through the book. Close the 
book and think about these things for awhile. This is the point from 
which we will build. 

The point here has not been to get you thinking in a fatalistic way. 
That would be counterproductive, because to trade the markets effec-
tively will require a great deal of optimism on your part to make it 
through the inevitable prolonged losing streaks. The point here has been 
to get you to think about the worst-case scenario and to make contin-
gency plans in case such a worst-case scenario occurs. Now, take that 
sheet of paper with your contingency plans (and with the amount at 
which point you will quit trading unlimited liability vehicles altogether 
written on it) and put it in the top drawer of your desk. Now, if the 
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worst-case scenario should develop you know you won't be jumping out 
of the window. 

Hope for the best but prepare for the worst. If you haven't done 
these exercises, then close this book now and keep it closed. Nothing 
can help you if you do not have this foundation to build upon. 

MATHEMATICS NOTATION 
Since this book is infected with mathematical equations, I have tried 

to make the mathematical notation as easy to understand, and as easy to 
take from the text to the computer keyboard, as possible. Multiplication 
will always be denoted with an asterisk (*), and exponentiation will 
always be denoted with a raised caret (^). Therefore, the square root of a 
number will be denoted as ^(l/2). You will never have to encounter the 
radical sign. Division is expressed with a slash (/) in most cases. Since 
the radical sign and the means of expressing division with a horizontal 
line are also used as a grouping operator instead of parentheses, that 
confusion will be avoided by using these conventions for division and 
exponentiation. Parentheses will be the only grouping operator used, and 
they may be used to aid in the clarity of an expression even if they are 
not mathematically necessary. At certain special times, brackets ({ }) 
may also be used as a grouping operator. 

Most of the mathematical functions used are quite straightforward 
(e.g., the absolute value function and the natural log function). One 
function that may not be familiar to all readers, however, is the expo-
nential function, denoted in this text as EXP(). This is more commonly 
expressed mathematically as the constant e, equal to 2.7182818285, 
raised to the power of the function. Thus: 

EXP(X) = e^X = 2.7182818285^X 
The main reason I have opted to use the function notation EXP(X) 

is that most computer languages have this function in one form or an-
other. Since much of the math in this book will end up transcribed into 
computer code, I find this notation more straightforward. 

SYNTHETIC CONSTRUCTS IN THIS TEXT 
As you proceed through the text, you will see that there is a certain 

geometry to this material. However, in order to get to this geometry we 
will have to create certain synthetic constructs. For one, we will convert 
trade profits and losses over to what will be referred to as holding pe-
riod returns or HPRs for short. An HPR is simply 1 plus what you 
made or lost on the trade as a percentage. Therefore, a trade that made a 
10% profit would be converted to an HPR of 1+.10 = 1.10. Similarly, a 
trade that lost 10% would have an HPR of 1+(-.10) = .90. Most texts, 
when referring to a holding period return, do not add 1 to the percentage 
gain or loss. However, throughout this text, whenever we refer to an 
HPR, it will always be 1 plus the gain or loss as a percentage. 

Another synthetic construct we must use is that of a market system. 
A market system is any given trading approach on any given market (the 
approach need not be a mechanical trading system, but often is). For 
example, say we are using two separate approaches to trading two sepa-
rate markets, and say that one of our approaches is a simple moving 
average crossover system. The other approach takes trades based upon 
our Elliott Wave interpretation. Further, say we are trading two separate 
markets, say Treasury Bonds and heating oil. We therefore have a total 
of four different market systems. We have the moving average system 
on bonds, the Elliott Wave trades on bonds, the moving average system 
on heating oil, and the Elliott Wave trades on heating oil. 

A market system can be further differentiated by other factors, one 
of which is dependency. For example, say that in our moving average 
system we discern (through methods discussed in this text) that winning 
trades beget losing trades and vice versa. We would, therefore, break 
our moving average system on any given market into two distinct mar-
ket systems. One of the market systems would take trades only after a 
loss (because of the nature of this dependency, this is a more advanta-
geous system), the other market system only after a profit. Referring 
back to our example of trading this moving average system in conjunc-
tion with Treasury Bonds and heating oil and using the Elliott Wave 
trades also, we now have six market systems: the moving average sys-
tem after a loss on bonds, the moving average system after a win on 
bonds, the Elliott Wave trades on bonds, the moving average system 
after a win on heating oil, the moving average system after a loss on 
heating oil, and the Elliott Wave trades on heating oil. 

Pyramiding (adding on contracts throughout the course of a trade) is 
viewed in a money management sense as separate, distinct market sys-
tems rather than as the original entry. For example, if you are using a 
trading technique that pyramids, you should treat the initial entry as one 
market system. Each add-on, each time you pyramid further, constitutes 
another market system. Suppose your trading technique calls for you to 
add on each time you have a $1,000 profit in a trade. If you catch a 
really big trade, you will be adding on more and more contracts as the 
trade progresses through these $1,000 levels of profit. Each separate 
add-on should be treated as a separate market system. There is a big 
benefit in doing this. The benefit is that the techniques discussed in this 
book will yield the optimal quantities to have on for a given market 
system as a function of the level of equity in your account. By treating 
each add-on as a separate market system, you will be able to use the 
techniques discussed in this book to know the optimal amount to add on 
for your current level of equity. 

Another very important synthetic construct we will use is the con-
cept of a unit. The HPRs that you will be calculating for the separate 
market systems must be calculated on a "1 unit" basis. In other words, if 
they are futures or options contracts, each trade should be for 1 contract. 
If it is stocks you are trading, you must decide how big 1 unit is. It can 
be 100 shares or it can be 1 share. If you are trading cash markets or 
foreign exchange (forex), you must decide how big 1 unit is. By using 
results based upon trading 1 unit as input to the methods in this book, 
you will be able to get output results based upon 1 unit. That is, you will 
know how many units you should have on for a given trade. It doesn't 
matter what size you decide 1 unit to be, because it's just an hypothetical 
construct necessary in order to make the calculations. For each market 
system you must figure how big 1 unit is going to be. For example, if 
you are a forex trader, you may decide that 1 unit will be one million 
U.S. dollars. If you are a stock trader, you may opt for a size of 100 
shares. 

Finally, you must determine whether you can trade fractional units 
or not. For instance, if you are trading commodities and you define 1 
unit as being 1 contract, then you cannot trade fractional units (i.e., a 
unit size less than 1), because the smallest denomination in which you 
can trade futures contracts in is 1 unit (you can possibly trade quasifrac-
tional units if you also trade minicontracts). If you are a stock trader and 
you define 1 unit as 1 share, then you cannot trade the fractional unit. 
However, if you define 1 unit as 100 shares, then you can trade the frac-
tional unit, if you're willing to trade the odd lot. 

If you are trading futures you may decide to have 1 unit be 1 mini-
contract, and not allow the fractional unit. Now, assuming that 2 mini-
contracts equal 1 regular contract, if you get an answer from the tech-
niques in this book to trade 9 units, that would mean you should trade 9 
minicontracts. Since 9 divided by 2 equals 4.5, you would optimally 
trade 4 regular contracts and 1 minicontract here. 

Generally, it is very advantageous from a money management per-
spective to be able to trade the fractional unit, but this isn't always true. 
Consider two stock traders. One defines 1 unit as 1 share and cannot 
trade the fractional unit; the other defines 1 unit as 100 shares and can 
trade the fractional unit. Suppose the optimal quantity to trade in today 
for the first trader is to trade 61 units (i.e., 61 shares) and for the second 
trader for the same day it is to trade 0.61 units (again 61 shares). 

I have been told by others that, in order to be a better teacher, I must 
bring the material to a level which the reader can understand. Often 
these other people's suggestions have to do with creating analogies be-
tween the concept I am trying to convey and something they already are 
familiar with. Therefore, for the sake of instruction you will find numer-
ous analogies in this text. But I abhor analogies. Whereas analogies may 
be an effective tool for instruction as well as arguments, I don't like 
them because they take something foreign to people and (often quite 
deceptively) force fit it to a template of logic of something people al-
ready know is true. Here is an example: 

The square root of 6 is 3 because the square root of 4 is 2 and 2+2 = 
4. Therefore, since 3+3 = 6, then the square root of 6 must be 3. 

Analogies explain, but they do not solve. Rather, an analogy makes 
the a priori assumption that something is true, and this "explanation" 
then masquerades as the proof. You have my apologies in advance for 
the use of the analogies in this text. I have opted for them only for the 
purpose of instruction. 
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OPTIMAL TRADING QUANTITIES AND OPTIMAL F 
Modern portfolio theory, perhaps the pinnacle of money manage-

ment concepts from the stock trading arena, has not been embraced by 
the rest of the trading world. Futures traders, whose technical trading 
ideas are usually adopted by their stock trading cousins, have been re-
luctant to accept ideas from the stock trading world. As a consequence, 
modern portfolio theory has never really been embraced by futures trad-
ers. 

Whereas modern portfolio theory will determine optimal weightings 
of the components within a portfolio (so as to give the least variance to a 
prespecified return or vice versa), it does not address the notion of opti-
mal quantities. That is, for a given market system, there is an optimal 
amount to trade in for a given level of account equity so as to maximize 
geometric growth. This we will refer to as the optimal f. This book pro-
poses that modern portfolio theory can and should be used by traders in 
any markets, not just the stock markets. However, we must marry mod-
ern portfolio theory (which gives us optimal weights) with the notion of 
optimal quantity (optimal f) to arrive at a truly optimal portfolio. It is 
this truly optimal portfolio that can and should be used by traders in any 
markets, including the stock markets. 

In a nonleveraged situation, such as a portfolio of stocks that are not 
on margin, weighting and quantity are synonymous, but in a leveraged 
situation, such as a portfolio of futures market systems, weighting and 
quantity are different indeed. In this book you will see an idea first 
roughly introduced in Portfolio Management Formulas, that optimal 
quantities are what we seek to know, and that this is a function of opti-
mal weightings. 

Once we amend modern portfolio theory to separate the notions of 
weight and quantity, we can return to the stock trading arena with this 
now reworked tool. We will see how almost any nonleveraged portfolio 
of stocks can be improved dramatically by making it a leveraged portfo-
lio, and marrying the portfolio with the risk-free asset. This will become 
intuitively obvious to you. The degree of risk (or conservativeness) is 
then dictated by the trader as a function of how much or how little lev-
erage the trader wishes to apply to this portfolio. This implies that where 
a trader is on the spectrum of risk aversion is a function of the leverage 
used and not a function of the type of trading vehicle used. 

In short, this book will teach you about risk management. Very few 
traders have an inkling as to what constitutes risk management. It is not 
simply a matter of eliminating risk altogether. To do so is to eliminate 
return altogether. It isn't simply a matter of maximizing potential reward 
to potential risk either. Rather, risk management is about decision-
making strategies that seek to maximize the ratio of potential reward 
to potential risk within a given acceptable level of risk. 

To learn this, we must first learn about optimal f, the optimal quan-
tity component of the equation. Then we must learn about combining 
optimal f with the optimal portfolio weighting. Such a portfolio will 
maximize potential reward to potential risk. We will first cover these 
concepts from an empirical standpoint (as was introduced in Portfolio 
Management Formulas), then study them from a more powerful stand-
point, the parametric standpoint. In contrast to an empirical approach, 
which utilizes past data to come up with answers directly, a parametric 
approach utilizes past data to come up with parameters. These are cer-
tain measurements about something. These parameters are then used in a 
model to come up with essentially the same answers that were derived 
from an empirical approach. The strong point about the parametric ap-
proach is that you can alter the values of the parameters to see the effect 
on the outcome from the model. This is something you cannot do with 
an empirical technique. However, empirical techniques have their strong 
points, too. The empirical techniques are generally more straightforward 
and less math intensive. Therefore they are easier to use and compre-
hend. For this reason, the empirical techniques are covered first. 

Finally, we will see how to implement the concepts within a user-
specified acceptable level of risk, and learn strategies to maximize this 
situation further. 

There is a lot of material to be covered here. I have tried to make 
this text as concise as possible. Some of the material may not sit well 
with you, the reader, and perhaps may raise more questions than it an-
swers. If that is the case, than I have succeeded in one facet of what I 
have attempted to do. Most books have a single "heart," a central con-
cept that the entire text flows toward. This book is a little different in 
that it has many hearts. Thus, some people may find this book difficult 

when they go to read it if they are subconsciously searching for a single 
heart. I make no apologies for this; this does not weaken the logic of the 
text; rather, it enriches it. This book may take you more than one read-
ing to discover many of its hearts, or just to be comfortable with it. 

One of the many hearts of this book is the broader concept of deci-
sion making in environments characterized by geometric conse-
quences. An environment of geometric consequence is an environment 
where a quantity that you have to work with today is a function of prior 
outcomes. I think this covers most environments we live in! Optimal f is 
the regulator of growth in such environments, and the by-products of 
optimal f tell us a great deal of information about the growth rate of a 
given environment. In this text you will learn how to determine the op-
timal f and its by-products for any distributional form. This is a statisti-
cal tool that is directly applicable to many real-world environments in 
business and science. I hope that you will seek to apply the tools for 
finding the optimal f parametrically in other fields where there are such 
environments, for numerous different distributions, not just for trading 
the markets. 

For years the trading community has discussed the broad concept of 
"money management." Yet by and large, money management has been 
characterized by a loose collection of rules of thumb, many of which 
were incorrect. Ultimately, I hope that this book will have provided 
traders with exactitude under the heading of money management. 
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Chapter 1-The Empirical Techniques 
This chapter is a condensation of Portfolio Management Formu-

las. The purpose here is to bring those readers unfamiliar with these 
empirical techniques up to the same level of understanding as those 
who are. 

DECIDING ON QUANTITY 
Whenever you enter a trade, you have made two decisions: Not only 

have you decided whether to enter long or short, you have also decided 
upon the quantity to trade in. This decision regarding quantity is always 
a function of your account equity. If you have a $10,000 account, don't 
you think you would be leaning into the trade a little if you put on 100 
gold contracts? Likewise, if you have a $10 million account, don't you 
think you'd be a little light if you only put on one gold contract ? 
Whether we acknowledge it or not, the decision of what quantity to have 
on for a given trade is inseparable from the level of equity in our ac-
count. 

It is a very fortunate fact for us though that an account will grow the 
fastest when we trade a fraction of the account on each and every trade-
in other words, when we trade a quantity relative to the size of our stake. 

However, the quantity decision is not simply a function of the eq-
uity in our account, it is also a function of a few other things. It is a 
function of our perceived "worst-case" loss on the next trade. It is a 
function of the speed with which we wish to make the account grow. It 
is a function of dependency to past trades. More variables than these just 
mentioned may be associated with the quantity decision, yet we try to 
agglomerate all of these variables, including the account's level of eq-
uity, into a subjective decision regarding quantity: How many contracts 
or shares should we put on? 

In this discussion, you will learn how to make the mathematically 
correct decision regarding quantity. You will no longer have to make 
this decision subjectively (and quite possibly erroneously). You will see 
that there is a steep price to be paid by not having on the correct quan-
tity, and this price increases as time goes by. 

Most traders gloss over this decision about quantity. They feel that 
it is somewhat arbitrary in that it doesn't much matter what quantity they 
have on. What matters is that they be right about the direction of the 
trade. Furthermore, they have the mistaken impression that there is a 
straight-line relationship between how many contracts they have on and 
how much they stand to make or lose in the long run. 

This is not correct. As we shall see in a moment, the relationship be-
tween potential gain and quantity risked is not a straight line. It is 
curved. There is a peak to this curve, and it is at this peak that we 
maximize potential gain per quantity at risk. Furthermore, as you will 
see throughout this discussion, the decision regarding quantity for a 
given trade is as important as the decision to enter long or short in the 
first place. Contrary to most traders' misconception, whether you are 
right or wrong on the direction of the market when you enter a trade 
does not dominate whether or not you have the right quantity on. Ulti-
mately, we have no control over whether the next trade will be profit-
able or not. Yet we do have control over the quantity we have on. Since 
one does not dominate the other, our resources are better spent con-
centrating on putting on the tight quantity. 

On any given trade, you have a perceived worst-case loss. You may 
not even be conscious of this, but whenever you enter a trade you have 
some idea in your mind, even if only subconsciously, of what can hap-
pen to this trade in the worst-case. This worst-case perception, along 
with the level of equity in your account, shapes your decision about how 
many contracts to trade. 

Thus, we can now state that there is a divisor of this biggest per-
ceived loss, a number between 0 and 1 that you will use in determining 
how many contracts to trade. For instance, if you have a $50,000 ac-
count, if you expect, in the worst case, to lose $5,000 per contract, and if 
you have on 5 contracts, your divisor is .5, since: 

50,000/(5,000/.5) = 5 
In other words, you have on 5 contracts for a $50,000 account, so 

you have 1 contract for every $10,000 in equity. You expect in the 
worst case to lose $5,000 per contract, thus your divisor here is .5. If 
you had on only 1 contract, your divisor in this case would be .1 since: 

50,000/(5,000/.l) = 1 
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Figure 1-1 20 sequences of +2, -1. 

This divisor we will call by its variable name f. Thus, whether con-
sciously or subconsciously, on any given trade you are selecting a value 
for f when you decide how many contracts or shares to put on. 

Refer now to Figure 1-1. This represents a game where you have a 
50% chance of winning $2 versus a 50% chance of losing $1 on every 
play. Notice that here the optimal f is .25 when the TWR is 10.55 after 
40 bets (20 sequences of +2, -1). TWR stands for Terminal Wealth 
Relative. It represents the return on your stake as a multiple. A TWR of 
10.55 means you would have made 10.55 times your original stake, or 
955% profit. Now look at what happens if you bet only 15% away from 
the optimal .25 f. At an f of .1 or .4 your TWR is 4.66. This is not even 
half of what it is at .25, yet you are only 15% away from the optimal and 
only 40 bets have elapsed! 

How much are we talking about in terms of dollars? At f = .1, you 
would be making 1 bet for every $10 in your stake. At f = .4, you would 
be making I bet for every $2.50 in your stake. Both make the same 
amount with a TWR of 4.66. At f = .25, you are making 1 bet for every 
$4 in your stake. Notice that if you make 1 bet for every $4 in your 
stake, you will make more than twice as much after 40 bets as you 
would if you were making 1 bet for every $2.50 in your stake! Clearly it 
does not pay to overbet. At 1 bet per every $2.50 in your stake you make 
the same amount as if you had bet a quarter of that amount, 1 bet for 
every $10 in your stake! Notice that in a 50/50 game where you win 
twice the amount that you lose, at an f of .5 you are only breaking even! 
That means you are only breaking even if you made 1 bet for every $2 
in your stake. At an f greater than .5 you are losing in this game, and it 
is simply a matter of time until you are completely tapped out! In other 
words, if your fin this 50/50, 2:1 game is .25 beyond what is optimal, 
you will go broke with a probability that approaches certainty as you 
continue to play. Our goal, then, is to objectively find the peak of the f 
curve for a given trading system. 

In this discussion certain concepts will be illuminated in terms of 
gambling illustrations. The main difference between gambling and 
speculation is that gambling creates risk (and hence many people are 
opposed to it) whereas speculation is a transference of an already exist-
ing risk (supposedly) from one party to another. The gambling illustra-
tions are used to illustrate the concepts as clearly and simply as possible. 
The mathematics of money management and the principles involved in 
trading and gambling are quite similar. The main difference is that in the 
math of gambling we are usually dealing with Bernoulli outcomes (only 
two possible outcomes), whereas in trading we are dealing with the 
entire probability distribution that the trade may take. 

BASIC CONCEPTS 
A probability statement is a number between 0 and 1 that specifies 

how probable an outcome is, with 0 being no probability whatsoever of 
the event in question occurring and 1 being that the event in question is 
certain to occur. An independent trials process (sampling with re-
placement) is a sequence of outcomes where the probability statement is 
constant from one event to the next. A coin toss is an example of just 
such a process. Each toss has a 50/50 probability regardless of the out-
come of the prior toss. Even if the last 5 flips of a coin were heads, the 
probability of this flip being heads is unaffected and remains .5. 
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Naturally, the other type of random process is one in which the out-
come of prior events does affect the probability statement, and naturally, 
the probability statement is not constant from one event to the next. 
These types of events are called dependent trials processes (sampling 
without replacement). Blackjack is an example of just such a process. 
Once a card is played, the composition of the deck changes. Suppose a 
new deck is shuffled and a card removed-say, the ace of diamonds. Prior 
to removing this card the probability of drawing an ace was 4/52 or 
.07692307692. Now that an ace has been drawn from the deck, and not 
replaced, the probability of drawing an ace on the next draw is 3/51 or 
.05882352941. 

Try to think of the difference between independent and dependent 
trials processes as simply whether the probability statement is fixed 
(independent trials) or variable (dependent trials) from one event to 
the next based on prior outcomes. This is in fact the only difference. 

THE RUNS TEST 
When we do sampling without replacement from a deck of cards, 

we can determine by inspection that there is dependency. For certain 
events (such as the profit and loss stream of a system's trades) where 
dependency cannot be determined upon inspection, we have the runs 
test. The runs test will tell us if our system has more (or fewer) streaks 
of consecutive wins and losses than a random distribution. 

The runs test is essentially a matter of obtaining the Z scores for the 
win and loss streaks of a system's trades. A Z score is how many stan-
dard deviations you are away from the mean of a distribution. Thus, a Z 
score of 2.00 is 2.00 standard deviations away from the mean (the ex-
pectation of a random distribution of streaks of wins and losses). 

The Z score is simply the number of standard deviations the data is 
from the mean of the Normal Probability Distribution. For example, a Z 
score of 1.00 would mean that the data you arc testing is within 1 stan-
dard deviation from the mean. Incidentally, this is perfectly normal. 

The Z score is then converted into a confidence limit, sometimes 
also called a degree of certainty. The area under the curve of the Nor-
mal Probability Function at 1 standard deviation on either side of the 
mean equals 68% of the total area under the curve. So we take our Z 
score and convert it to a confidence limit, the relationship being that the 
Z score is a number of standard deviations from the mean and the confi-
dence limit is the percentage of area under the curve occupied at so 
many standard deviations. 
Confidence Limit (%)  Z Score  
99.73  3.00  
99  2.58  
98  2.33  
97  2.17  
96  2.05  
95.45  2.00  
95  1.96  
90  1.64  

With a minimum of 30 closed trades we can now compute our Z 
scores. What we are trying to answer is how many streaks of wins 
(losses) can we expect from a given system? Are the win (loss) streaks 
of the system we are testing in line with what we could expect? If not, is 
there a high enough confidence limit that we can assume dependency 
exists between trades -i.e., is the outcome of a trade dependent on the 
outcome of previous trades? 

Here then is the equation for the runs test, the system's Z score: 
(1.01) Z = (N*(R-.5)-X)/((X*(X-N))/(N-1))^(1/2) 

where 
N = The total number of trades in the sequence.  
R = The total number of runs in the sequence. 
X = 2*W*L 
W = The total number of winning trades in the sequence.  
L = The total number of losing trades in the sequence. 
Here is how to perform this computation: 

1. Compile the following data from your run of trades: 
A. The total number of trades, hereafter called N. 
B. The total number of winning trades and the total number of losing 
trades. Now compute what we will call X. X = 2*Total Number of 
Wins*Total Number of Losses. 

C. The total number of runs in a sequence. We'll call this R. 
2. Let's construct an example to follow along with. Assume the fol-
lowing trades: 
-3 +2 +7 -4 +1 -1 +1 +6 -1 0 -2 +1 

The net profit is +7. The total number of trades is 12, so N = 12, to 
keep the example simple. We are not now concerned with how big the 
wins and losses are, but rather how many wins and losses there are and 
how many streaks. Therefore, we can reduce our run of trades to a sim-
ple sequence of pluses and minuses. Note that a trade with a P&L of 0 is 
regarded as a loss. We now have: 
-  +  +  - +  -  +  +  -  -  -  +  

As can be seen, there are 6 profits and 6 losses; therefore, X = 
2*6*6 = 72. As can also be seen, there are 8 runs in this sequence; there-
fore, R = 8. We define a run as anytime you encounter a sign change 
when reading the sequence as just shown from left to right (i.e., 
chronologically). Assume also that you start at 1. 
1. You would thus count this sequence as follows: 
-  +  +  -  +  -  +  +  -  -  -  +  
1  2   3  4  5  6   7    8  
2. Solve the expression: 
N*(R-.5)-X 

For our example this would be: 
12*(8-5)-72 
12*7.5-72 
90-72 
18 
3. Solve the expression: 
(X*(X-N))/(N-1) 

For our example this would be: 
(72*(72-12))/(12-1) 
(72*60)/11 
4320/11 
392.727272 
4. Take the square root of the answer in number 3. For our example this 
would be: 
392.727272^(l/2) = 19.81734777 
5. Divide the answer in number 2 by the answer in number 4. This is 
your Z score. For our example this would be: 
18/19.81734777 = .9082951063 
6. Now convert your Z score to a confidence limit. The distribution of 
runs is binomially distributed. However, when there are 30 or more 
trades involved, we can use the Normal Distribution to very closely 
approximate the binomial probabilities. Thus, if you are using 30 or 
more trades, you can simply convert your Z score to a confidence limit 
based upon Equation (3.22) for 2-tailed probabilities in the Normal Dis-
tribution. 

The runs test will tell you if your sequence of wins and losses con-
tains more or fewer streaks (of wins or losses) than would ordinarily be 
expected in a truly random sequence, one that has no dependence be-
tween trials. Since we are at such a relatively low confidence limit in 
our example, we can assume that there is no dependence between trials 
in this particular sequence. 

If your Z score is negative, simply convert it to positive (take the 
absolute value) when finding your confidence limit. A negative Z score 
implies positive dependency, meaning fewer streaks than the Normal 
Probability Function would imply and hence that wins beget wins and 
losses beget losses. A positive Z score implies negative dependency, 
meaning more streaks than the Normal Probability Function would im-
ply and hence that wins beget losses and losses beget wins. 

What would an acceptable confidence limit be? Statisticians gener-
ally recommend selecting a confidence limit at least in the high nineties. 
Some statisticians recommend a confidence limit in excess of 99% in 
order to assume dependency, some recommend a less stringent mini-
mum of 95.45% (2 standard deviations). 

Rarely, if ever, will you find a system that shows confidence limits 
in excess of 95.45%. Most frequently the confidence limits encountered 
are less than 90%. Even if you find a system with a confidence limit 
between 90 and 95.45%, this is not exactly a nugget of gold. To assume 
that there is dependency involved that can be capitalized upon to make a 
substantial difference, you really need to exceed 95.45% as a bare 
minimum. 
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As long as the dependency is at an acceptable confidence limit, you 
can alter your behavior accordingly to make better trading decisions, 
even though you do not understand the underlying cause of the depend-
ency. If you could know the cause, you could then better estimate when 
the dependency was in effect and when it was not, as well as when a 
change in the degree of dependency could be expected. 

So far, we have only looked at dependency from the point of view 
of whether the last trade was a winner or a loser. We are trying to de-
termine if the sequence of wins and losses exhibits dependency or not. 
The runs test for dependency automatically takes the percentage of wins 
and losses into account. However, in performing the runs test on runs of 
wins and losses, we have accounted for the sequence of wins and losses 
but not their size. In order to have true independence, not only must the 
sequence of the wins and losses be independent, the sizes of the wins 
and losses within the sequence must also be independent. It is possible 
for the wins and losses to be independent, yet their sizes to be dependent 
(or vice versa). One possible solution is to run the runs test on only the 
winning trades, segregating the runs in some way (such as those that are 
greater than the median win and those that are less), and then look for 
dependency among the size of the winning trades. Then do this for the 
losing trades. 

SERIAL CORRELATION 
There is a different, perhaps better, way to quantify this possible de-

pendency between the size of the wins and losses. The technique to be 
discussed next looks at the sizes of wins and losses from an entirely 
different perspective mathematically than the does runs test, and hence, 
when used in conjunction with the runs test, measures the relationship of 
trades with more depth than the runs test alone could provide. This tech-
nique utilizes the linear correlation coefficient, r, sometimes called 
Pearson's r, to quantify the dependency/independency relationship. 

Now look at Figure 1-2. It depicts two sequences that are perfectly 
correlated with each other. We call this effect positive correlation. 

 
Figure 1-2 Positive correlation (r = +1.00). 

 
Figure 1-3 Negative correlation (r = -1 .00). 

Now look at Figure 1-3. It shows two sequences that are perfectly 
negatively correlated with each other. When one line is zigging the other 
is zagging. We call this effect negative correlation. 

The formula for finding the linear correlation coefficient, r, between 
two sequences, X and Y, is as follows (a bar over a variable means the 
arithmetic mean of the variable): 
(1.02) R = (∑a(Xa-X[])*(Ya-Y[]))/((∑a(Xa-X[])^2)^(1/2)*(∑a(Ya-
Y[])^2)^(l/2)) 

Here is how to perform the calculation: 
7. Average the X's and the Y's (shown as X[] and Y[]). 

8. For each period find the difference between each X and the average 
X and each Y and the average Y. 
9. Now calculate the numerator. To do this, for each period multiply 
the answers from step 2-in other words, for each period multiply to-
gether the differences between that period's X and the average X and 
between that period's Y and the average Y. 
10. Total up all of the answers to step 3 for all of the periods. This is 
the numerator. 
11. Now find the denominator. To do this, take the answers to step 2 
for each period, for both the X differences and the Y differences, and 
square them (they will now all be positive numbers). 
12. Sum up the squared X differences for all periods into one final 
total. Do the same with the squared Y differences. 
13. Take the square root to the sum of the squared X differences you 
just found in step 6. Now do the same with the Y's by taking the square 
root of the sum of the squared Y differences. 
14. Multiply together the two answers you just found in step 1 - that is, 
multiply together the square root of the sum of the squared X differ-
ences by the square root of the sum of the squared Y differences. This 
product is your denominator. 
15. Divide the numerator you found in step 4 by the denominator you 
found in step 8. This is your linear correlation coefficient, r. 

The value for r will always be between +1.00 and -1.00. A value of 
0 indicates no correlation whatsoever. 

Now look at Figure 1-4. It represents the following sequence of 21 
trades: 

1, 2, 1, -1, 3, 2, -1, -2, -3, 1, -2, 3, 1, 1, 2, 3, 3, -1, 2, -1, 3 

4

2

0

-2

-4  
Figure 1-4 Individual outcomes of 21 trades. 

We can use the linear correlation coefficient in the following man-
ner to see if there is any correlation between the previous trade and the 
current trade. The idea here is to treat the trade P&L's as the X values in 
the formula for r. Superimposed over that we duplicate the same trade 
P&L's, only this time we skew them by 1 trade and use these as the Y 
values in the formula for r. In other words, the Y value is the previous X 
value. (See Figure 1-5.). 
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-4  
Figure 1-5 Individual outcomes of 21 trades skewed by 1 trade. 
A(X) B(X) C(X-X[]) D(Y-Y[]) E(C*D) F(C^2) G(D^2) 
1        
2  1  1.2  0.3  0.36  1.44  0.09  
1  2  0.2  1.3  0.26  0.04  1.69  
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-1  1  -1.8  0.3  -0.54  3.24  0.09  
3  -1  2.2  -1.7  -3.74  4.84  2.89  
2 3 1.2 2.3 2.76 1.44 5.29 
-1 2 -1.8 1.3 -2.34 3.24 1.69 
-2  -1  -2.8  -1.7  4.76  7.84  2.89 
-3  -2  -3.8  -2.7  10.26  14.44  7.29 
1  -3  0.2  -3.7  -0.74  0.04  13.69 
-2  1  -2.8  0.3  -0.84  7.84  0.09 
3  -2  2.2  -2.7  -5.94  4.84  7.29 
1  3  0.2  2.3  0.46  0.04  5.29 
1  1  0.2  0.3  0.06  0.04  0.09 
2  1  1.2  0.3  0.36  1.44  0.09 
3  2  2.2  1.3  2.86  4.84  1.69 
3  3  2.2  2.3  5.06  4.84  5.29 
-1  3  -1.8  2.3  -4.14  3.24  5.29 
2  -1  1.2  -1.7  -2.04  1.44  2.89 
-1  2  -1.8  1.3  -2.34  3.24  1.69 
3  -1  2.2  -1.7  -3.74  4.84  2.89 
 3      
X[] = .8 Y[] = .7  Totals 0.8 73.2 68.2 

The averages differ because you only average those X's and Y's that 
have a corresponding X or Y value (i.e., you average only those values 
that overlap), so the last Y value (3) is not figured in the Y average nor 
is the first X value (1) figured in the x average. 

The numerator is the total of all entries in column E (0.8). To find 
the denominator, we take the square root of the total in column F, 
which is 8.555699, and we take the square root to the total in column 
G, which is 8.258329, and multiply them together to obtain a denomina-
tor of 70.65578. We now divide our numerator of 0.8 by our denomina-
tor of 70.65578 to obtain .011322. This is our linear correlation coeffi-
cient, r. 

The linear correlation coefficient of .011322 in this case is hardly 
indicative of anything, but it is pretty much in the range you can expect 
for most trading systems. High positive correlation (at least .25) gener-
ally suggests that big wins are seldom followed by big losses and vice 
versa. Negative correlation readings (below -.25 to -.30) imply that big 
losses tend to be followed by big wins and vice versa. The correlation 
coefficients can be translated, by a technique known as Fisher's Z 
transformation, into a confidence level for a given number of trades. 
This topic is treated in Appendix C. 

Negative correlation is just as helpful as positive correlation. For 
example, if there appears to be negative correlation and the system has 
just suffered a large loss, we can expect a large win and would therefore 
have more contracts on than we ordinarily would. If this trade proves to 
be a loss, it will most likely not be a large loss (due to the negative cor-
relation). 

Finally, in determining dependency you should also consider out-of-
sample tests. That is, break your data segment into two or more parts. If 
you see dependency in the first part, then see if that dependency also 
exists in the second part, and so on. This will help eliminate cases where 
there appears to be dependency when in fact no dependency exists. 

Using these two tools (the runs test and the linear correlation coeffi-
cient) can help answer many of these questions. However, they can only 
answer them if you have a high enough confidence limit and/or a high 
enough correlation coefficient. Most of the time these tools are of little 
help, because all too often the universe of futures system trades is domi-
nated by independency. If you get readings indicating dependency, and 
you want to take advantage of it in your trading, you must go back and 
incorporate a rule in your trading logic to exploit the dependency. In 
other words, you must go back and change the trading system logic to 
account for this dependency (i.e., by passing certain trades or breaking 
up the system into two different systems, such as one for trades after 
wins and one for trades after losses). Thus, we can state that if depend-
ency shows up in your trades, you haven't maximized your system. In 
other words, dependency, if found, should be exploited (by changing the 
rules of the system to take advantage of the dependency) until it no 
longer appears to exist. The first stage in money management is there-
fore to exploit, and hence remove, any dependency in trades. 

For more on dependency than was covered in Portfolio Manage-
ment Formulas and reiterated here, see Appendix C, "Further on De-
pendency: The Turning Points and Phase Length Tests." 

We have been discussing dependency in the stream of trade profits 
and losses. You can also look for dependency between an indicator and 

the subsequent trade, or between any two variables. For more on these 
concepts, the reader is referred to the section on statistical validation of 
a trading system under "The Binomial Distribution" in Appendix B. 

COMMON DEPENDENCY ERRORS 
As traders we must generally assume that dependency does not exist 

in the marketplace for the majority of market systems. That is, when 
trading a given market system, we will usually be operating in an envi-
ronment where the outcome of the next trade is not predicated upon the 
outcome(s) of prior trade(s). That is not to say that there is never de-
pendency between trades for some market systems (because for some 
market systems dependency does exist), only that we should act as 
though dependency does not exist unless there is very strong evidence to 
the contrary. Such would be the case if the Z score and the linear corre-
lation coefficient indicated dependency, and the dependency held up 
across markets and across optimizable parameter values. If we act as 
though there is dependency when the evidence is not overwhelming, we 
may well just be fooling ourselves and causing more self-inflicted harm 
than good as a result. Even if a system showed dependency to a 95% 
confidence limit for all values of a parameter, it still is hardly a high 
enough confidence limit to assume that dependency does in fact exist 
between the trades of a given market or system. 

A type I error is committed when we reject an hypothesis that 
should be accepted. If, however, we accept an hypothesis when it should 
be rejected, we have committed a type II error. Absent knowledge of 
whether an hypothesis is correct or not, we must decide on the penalties 
associated with a type I and type II error. Sometimes one type of error is 
more serious than the other, and in such cases we must decide whether 
to accept or reject an unproven hypothesis based on the lesser penalty. 

Suppose you are considering using a certain trading system, yet 
you're not extremely sure that it will hold up when you go to trade it 
real-time. Here, the hypothesis is that the trading system will hold up 
real-time. You decide to accept the hypothesis and trade the system. If it 
does not hold up, you will have committed a type II error, and you will 
pay the penalty in terms of the losses you have incurred trading the sys-
tem real-time. On the other hand, if you choose to not trade the system, 
and it is profitable, you will have committed a type I error. In this in-
stance, the penalty you pay is in forgone profits. 

Which is the lesser penalty to pay? Clearly it is the latter, the for-
gone profits of not trading the system. Although from this example you 
can conclude that if you're going to trade a system real-time it had better 
be profitable, there is an ulterior motive for using this example. If we 
assume there is dependency, when in fact there isn't, we will have com-
mitted a type 'II error. Again, the penalty we pay will not be in forgone 
profits, but in actual losses. However, if we assume there is not depend-
ency when in fact there is, we will have committed a type I error and our 
penalty will be in forgone profits. Clearly, we are better off paying the 
penalty of forgone profits than undergoing actual losses. Therefore, 
unless there is absolutely overwhelming evidence of dependency, you 
are much better off assuming that the profits and losses in trading 
(whether with a mechanical system or not) are independent of prior 
outcomes. 

There seems to be a paradox presented here. First, if there is de-
pendency in the trades, then the system is 'suboptimal. Yet dependency 
can never be proven beyond a doubt. Now, if we assume and act as 
though there is dependency (when in fact there isn't), we have commit-
ted a more expensive error than if we assume and act as though depend-
ency does not exist (when in fact it does). For instance, suppose we have 
a system with a history of 60 trades, and suppose we see dependency to 
a confidence level of 95% based on the runs test. We want our system to 
be optimal, so we adjust its rules accordingly to exploit this apparent 
dependency. After we have done so, say we are left with 40 trades, and 
dependency no longer is apparent. We are therefore satisfied that the 
system rules are optimal. These 40 trades will now have a higher opti-
mal f than the entire 60 (more on optimal f later in this chapter). 

If you go and trade this system with the new rules to exploit the de-
pendency, and the higher concomitant optimal f, and if the dependency 
is not present, your performance will be closer to that of the 60 trades, 
rather than the superior 40 trades. Thus, the f you have chosen will be 
too far to the right, resulting in a big price to pay on your part for assum-
ing dependency. If dependency is there, then you will be closer to the 
peak of the f curve by assuming that the dependency is there. Had you 
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decided not to assume it when in fact there was dependency, you would 
tend to be to the left of the peak of the f curve, and hence your perform-
ance would be suboptimal (but a lesser price to pay than being to the 
right of the peak). 

In a nutshell, look for dependency. If it shows to a high enough de-
gree across parameter values and markets for that system, then alter the 
system rules to capitalize on the dependency. Otherwise, in the absence 
of overwhelming statistical evidence of dependency, assume that it does 
not exist, (thus opting to pay the lesser penalty if in fact dependency 
does exist). 

MATHEMATICAL EXPECTATION 
By the same token, you are better off not to trade unless there is ab-

solutely overwhelming evidence that the market system you are con-
templating trading will be profitable-that is, unless you fully expect the 
market system in question to have a positive mathematical expectation 
when you trade it realtime. 

Mathematical expectation is the amount you expect to make or lose, 
on average, each bet. In gambling parlance this is sometimes known as 
the player's edge (if positive to the player) or the house's advantage (if 
negative to the player): 
(1.03) Mathematical Expectation = ∑[i = 1,N](Pi*Ai) 

where 
P = Probability of winning or losing. 
A = Amount won or lost. 
N = Number of possible outcomes. 
The mathematical expectation is computed by multiplying each pos-

sible gain or loss by the probability of that gain or loss and then sum-
ming these products together. 

Let's look at the mathematical expectation for a game where you 
have a 50% chance of winning $2 and a 50% chance of losing $1 under 
this formula: 
Mathematical Expectation = (.5*2)+(.5*(-1)) = 1+(-5) = .5 

In such an instance, of course, your mathematical expectation is to 
win 50 cents per toss on average. 

Consider betting on one number in roulette, where your mathemati-
cal expectation is: 
ME = ((1/38)*35)+((37/38)*(-1)) 
 = (.02631578947*35)+(.9736842105*(-1)) 
 = (9210526315)+(-.9736842105) 
 = -.05263157903 

Here, if you bet $1 on one number in roulette (American double-
zero) you would expect to lose, on average, 5.26 cents per roll. If you 
bet $5, you would expect to lose, on average, 26.3 cents per roll. Notice 
that different amounts bet have different mathematical expectations in 
terms of amounts, but the expectation as a percentage of the amount 
bet is always the same. The player's expectation for a series of bets is 
the total of the expectations for the individual bets. So if you go play 
$1 on a number in roulette, then $10 on a number, then $5 on a number, 
your total expectation is: 
ME = (-.0526*1)+(-.0526*10)+(-.0526*5) = -.0526-.526 .263 = -.8416 

You would therefore expect to lose, on average, 84.16 cents. 
This principle explains why systems that try to change the sizes of 

their bets relative to how many wins or losses have been seen (assuming 
an independent trials process) are doomed to fail. The summation of 
negative expectation bets is always a negative expectation! 

The most fundamental point that you must understand in terms of 
money management is that in a negative expectation game, there is no 
money-management scheme that will make you a winner. If you con-
tinue to bet, regardless of how you manage your money, it is almost 
certain that you will be a loser, losing your entire stake no matter how 
large it was to start. 

This axiom is not only true of a negative expectation game, it is true 
of an even-money game as well. Therefore, the only game you have a 
chance at winning in the long run is a positive arithmetic expectation 
game. Then, you can only win if you either always bet the same constant 
bet size or bet with an f value less than the f value corresponding to the 
point where the geometric mean HPR is less than or equal to 1. (We will 

cover the second part of this, regarding the geometric mean HPR, later 
on in the text.) 

This axiom is true only in the absence of an upper absorbing barrier. 
For example, let's assume a gambler who starts out with a $100 stake 
who will quit playing if his stake grows to $101. This upper target of 
$101 is called an absorbing barrier. Let's suppose our gambler is always 
betting $1 per play on red in roulette. Thus, he has a slight negative 
mathematical expectation. The gambler is far more likely to see his 
stake grow to $101 and quit than he is to see his stake go to zero and be 
forced to quit. If, however, he repeats this process over and over, he will 
find himself in a negative mathematical expectation. If he intends on 
playing this game like this only once, then the axiom of going broke 
with certainty, eventually, does not apply. 

The difference between a negative expectation and a positive one is 
the difference between life and death. It doesn't matter so much how 
positive or how negative your expectation is; what matters is whether it 
is positive or negative. So before money management can even be con-
sidered, you must have a positive expectancy game. If you don't, all the 
money management in the world cannot save you1. On the other hand, if 
you have a positive expectation, you can, through proper money man-
agement, turn it into an exponential growth function. It doesn't even 
matter how marginally positive the expectation is! 

In other words, it doesn't so much matter how profitable your trad-
ing system is on a 1 contract basis, so long as it is profitable, even if 
only marginally so. If you have a system that makes $10 per contract per 
trade (once commissions and slippage have been deducted), you can use 
money management to make it be far more profitable than a system that 
shows a $1,000 average trade (once commissions and slippage have 
been deducted). What matters, then, is not how profitable your system 
has been, but rather how certain is it that the system will show at least a 
marginal profit in the future. Therefore, the most important preparation 
a trader can do is to make as certain as possible that he has a positive 
mathematical expectation in the future. 

The key to ensuring that you have a positive mathematical expecta-
tion in the future is to not restrict your system's degrees of freedom. You 
want to keep your system's degrees of freedom as high as possible to 
ensure the positive mathematical expectation in the future. This is ac-
complished not only by eliminating, or at least minimizing, the number 
of optimizable parameters, but also by eliminating, or at least minimiz-
ing, as many of the system rules as possible. Every parameter you add, 
every rule you add, every little adjustment and qualification you add to 
your system diminishes its degrees of freedom. Ideally, you will have a 
system that is very primitive and simple, and that continually grinds out 
marginal profits over time in almost all the different markets. Again, it 
is important that you realize that it really doesn't matter how profitable 
the system is, so long as it is profitable. The money you will make trad-
ing will be made by how effective the money management you employ 
is. The trading system is simply a vehicle to give you a positive mathe-
matical expectation on which to use money management. Systems that 
work (show at least a marginal profit) on only one or a few markets, or 
have different rules or parameters for different markets, probably won't 
work real-time for very long. The problem with most technically ori-
ented traders is that they spend too much time and effort hating the 
computer crank out run after run of different rules and parameter values 
for trading systems. This is the ultimate "woulda, shoulda, coulda" 
game. It is completely counterproductive. Rather than concentrating 
your efforts and computer time toward maximizing your trading system 

                                                                 
1 This rule is applicable to trading one market system only. When you 
begin trading more than one market system, you step into a strange envi-
ronment where it is possible to include a market system with a negative 
mathematical expectation as one of the markets being traded and actu-
ally have a higher net mathematical expectation than the net mathemati-
cal expectation of the group before the inclusion of the negative expec-
tation system! Further, it is possible that the net mathematical expecta-
tion for the group with the inclusion of the negative mathematical ex-
pectation market system can be higher than the mathematical expecta-
tion of any of the individual market systems! For the time being we will 
consider only one market system at a time, so we most have a positive 
mathematical expectation in order for the money-management tech-
niques to work. 
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profits, direct the energy toward maximizing the certainty level of a 
marginal profit. 

TO REINVEST TRADING PROFITS OR NOT 
Let's call the following system "System A." In it we have 2 trades: 

the first making SO%, the second losing 40%. If we do not reinvest our 
returns, we make 10%. If we do reinvest, the same sequence of trades 
loses 10%. 
System A 

No Reinvestment With Reinvestment 
Trade No. P&L Cumulative P&L Cumulative 
  100  100 
1 50 150 50 150 
2 -40 110 -60 90 

Now let's look at System B, a gain of 15% and a loss of 5%, which 
also nets out 10% over 2 trades on a nonreinvestment basis, just like 
System A. But look at the results of System B with reinvestment: Unlike 
system A, it makes money. 
System B 
 No Reinvestment With Reinvestment 
Trade No. P&L Cumulative P&L Cumulative 
  100  100 
1 15 115 15 115 
2 -5 110 -5.75 109.25 

An important characteristic of trading with reinvestment that must 
be realized is that reinvesting trading profits can turn a winning sys-
tem into a losing system but not vice versa! A winning system is turned 
into a losing system in trading with reinvestment if the returns are not 
consistent enough. 

Changing the order or sequence of trades does not affect the final 
outcome. This is not only true on a nonreinvestment basis, but also true 
on a reinvestment basis (contrary to most people's misconception). 
System A  

No Reinvestment With Reinvestment 
Trade No. P&L Cumulative P&L Cumulative 
  100  100 
1 40 60 40 60 
2 50 110 30 90 
System B 

No Reinvestment With Reinvestment 
Trade No.  P&L Cumulative P&L Cumulative 
  100  100 
1 -5 95 -5 95 
2 15 110  14.25 109.25 

As can obviously be seen, the sequence of trades has no bearing on 
the final outcome, whether viewed on a reinvestment or a nonreinvest-
ment basis. (One side benefit to trading on a reinvestment basis is that 
the drawdowns tend to be buffered. As a system goes into and through a 
drawdown period, each losing trade is followed by a trade with fewer 
and fewer contracts.) 

By inspection it would seem you are better off trading on a nonrein-
vestment basis than you are reinvesting because your probability of 
winning is greater. However, this is not a valid assumption, because in 
the real world we do not withdraw all of our profits and make up all of 
our losses by depositing new cash into an account. Further, the nature of 
investment or trading is predicated upon the effects of compounding. If 
we do away with compounding (as in the nonreinvestment basis), we 
can plan on doing little better in the future than we can today, no matter 
how successful our trading is between now and then. It is compounding 
that takes the linear function of account growth and makes it a geomet-
ric function. 

If a system is good enough, the profits generated on a reinvestment 
basis will be far greater than those generated on a nonreinvestment ba-
sis, and that gap will widen as time goes by. If you have a system that 
can beat the market, it doesn't make any sense to trade it in any other 
way than to increase your amount wagered as your stake increases. 

MEASURING A GOOD SYSTEM FOR REINVESTMENT 
THE GEOMETRIC MEAN 

So far we have seen how a system can be sabotaged by not being 
consistent enough from trade to trade. Does this mean we should close 
up and put our money in the bank? 

Let's go back to System A, with its first 2 trades. For the sake of il-
lustration we are going to add two winners of 1 point each. 
System A 

No Reinvestment With Reinvestment 
Trade No. P&L Cumulative P&L Cumulative 
  100   100  
1  50  150  50  150  
2  -40  110  -60  90  
3  1  111  0.9  90.9  
4  1  112  0.909  91.809  
Percentage of Wins  75%  75%  
Avg. Trade  3  - 2.04775  
Risk/Rew.  1.3  0.86  
Std. Dev.  31.88  39.00  
Avg. Trade/Std. Dev.  0.09  -0.05  

Now let's take System B and add 2 more losers of 1 point each. 
System B  

No Reinvestment  With Reinvestment  
Trade No. P&L  Cumulative  P&L  Cumulative  
  100   100  
1  15  115  15 115  
2  - 5  110  -5.75  109.25  
3  -1  109  -1.0925 108.1575  
4  - 1  108  -1.08157 107.0759  
Percentage of Wins  25%  25%  
Avg. Trade  2  1.768981  
Risk/Rew.  2.14  1.89  
Std. Dev.  7.68  7.87  
Avg. Trade/Std. Dev.  0.26  0.22  

Now, if consistency is what we're really after, let's look at a bank 
account, the perfectly consistent vehicle (relative to trading), paying 1 
point per period. We'll call this series System C. 
System C 

No Reinvestment  With Reinvestment  
Trade No. P&L Cumulative  P&L  Cumulative 
  100   100 
1  1  101  1 101 
2  1  102  1.01 102.01 
3  1  103  1.0201 103.0301 
4  1  104  1.030301 104.0604 
Percentage of Wins  1.00  1 .00 
Avg. Trade  1  1.015100 
Risk/Rew.  Infinite  Infinite 
Std. Dev.  0.00  0.01  
Avg. Trade/Std. Dev.  Infinite  89.89  

Our aim is to maximize our profits under reinvestment trading. With 
that as the goal, we can see that our best reinvestment sequence comes 
from System B. How could we have known that, given only information 
regarding nonreinvestment trading? By percentage of winning trades? 
By total dollars? By average trade? The answer to these questions is 
"no," because answering "yes" would have us trading System A (but this 
is the solution most futures traders opt for). What if we opted for most 
consistency (i.e., highest ratio average trade/standard deviation or lowest 
standard deviation)? How about highest risk/reward or lowest draw-
down? These are not the answers either. If they were, we should put our 
money in the bank and forget about trading. 

System B has the tight mix of profitability and consistency. Systems 
A and C do not. That is why System B performs the best under rein-
vestment trading. What is the best way to measure this "right mix"? It 
turns out there is a formula that will do just that-the geometric mean. 
This is simply the Nth root of the Terminal Wealth Relative (TWR), 
where N is the number of periods (trades). The TWR is simply what 
we've been computing when we figure what the final cumulative amount 
is under reinvestment, In other words, the TWRs for the three systems 
we just saw are: 
System  TWR  
System A .91809  
System B 1.070759  
System C 1.040604  

Since there are 4 trades in each of these, we take the TWRs to the 
4th root to obtain the geometric mean: 
System  Geometric Mean  
System A  0. 978861  
System B  1.017238  
System C  1.009999  
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(1.04) TWR = ∏[i = 1,N]HPRi 
(1.05) Geometric Mean = TWR^(1/N) 

where 
N = Total number of trades. 
HPR = Holding period returns (equal to 1 plus the rate of return -

e.g., an HPR of 1.10 means a 10% return over a given period, bet, or 
trade). 

TWR = The number of dollars of value at the end of a run of peri-
ods/bets/trades per dollar of initial investment, assuming gains and 
losses are allowed to compound. 

Here is another way of expressing these variables: 
(1.06) TWR = Final Stake/Starting Stake 

The geometric mean (G) equals your growth factor per play, or: 
(1.07) G = (Final Stake/Starting Stake)^(I/Number of Plays) 

Think of the geometric mean as the "growth factor per play" of your 
stake. The system or market with the highest geometric mean is the 
system or market that makes the most profit trading on a reinvestment of 
returns basis. A geometric mean less than one means that the system 
would have lost money if you were trading it on a reinvestment basis. 

Investment performance is often measured with respect to the dis-
persion of returns. Measures such as the Sharpe ratio, Treynor measure, 
Jensen measure, Vami, and so on, attempt to relate investment perform-
ance to dispersion. The geometric mean here can be considered another 
of these types of measures. However, unlike the other measures, the 
geometric mean measures investment performance relative to dispersion 
in the same mathematical form as that in which the equity in your ac-
count is affected. 

Equation (1.04) bears out another point. If you suffer an HPR of 0, 
you will be completely wiped out, because anything multiplied by zero 
equals zero. Any big losing trade will have a very adverse effect on the 
TWR, since it is a multiplicative rather than additive function. Thus we 
can state that in trading you are only as smart as your dumbest mis-
take. 

HOW BEST TO REINVEST 
Thus far we have discussed reinvestment of returns in trading 

whereby we reinvest 100% of our stake on all occasions. Although we 
know that in order to maximize a potentially profitable situation we 
must use reinvestment, a 100% reinvestment is rarely the wisest thing to 
do. 

Take the case of a fair bet (50/50) on a coin toss. Someone is willing 
to pay you $2 if you win the toss but will charge you $1 if you lose. Our 
mathematical expectation is .5. In other words, you would expect to 
make 50 cents per toss, on average. This is true of the first toss and all 
subsequent tosses, provided you do not step up the amount you are wa-
gering. But in an independent trials process this is exactly what you 
should do. As you win you should commit more and more to each toss. 

Suppose you begin with an initial stake of one dollar. Now suppose 
you win the first toss and are paid two dollars. Since you had your entire 
stake ($1) riding on the last bet, you bet your entire stake (now $3) on 
the next toss as well. However, this next toss is a loser and your entire 
$3 stake is gone. You have lost your original $1 plus the $2 you had 
won. If you had won the last toss, it would have paid you $6 since you 
had three $1 bets on it. The point is that if you are betting 100% of your 
stake, you'll be wiped out as soon as you encounter a losing wager, an 
inevitable event. If we were to replay the previous scenario and you had 
bet on a nonreinvestment basis (i.e., constant bet size) you would have 
made $2 on the first bet and lost $1 on the second. You would now be 
net ahead $1 and have a total stake of $2. 

Somewhere between these two scenarios lies the optimal betting ap-
proach for a positive expectation. However, we should first discuss the 
optimal betting strategy for a negative expectation game. When you 
know that the game you are playing has a negative mathematical expec-
tation, the best bet is no bet. Remember, there is no money-management 
strategy that can turn a losing game into a winner. 'However, if you 
must bet on a negative expectation game, the next best strategy is the 
maximum boldness strategy. In other words, you want to bet on as few 
trials as possible (as opposed to a positive expectation game, where you 
want to bet on as many trials as possible). The more trials, the greater 
the likelihood that the positive expectation will be realized, and hence 

the greater the likelihood that betting on the negative expectation side 
will lose. Therefore, the negative expectation side has a lesser and lesser 
chance of losing as the length of the game is shortened - i.e., as the 
number of trials approaches 1. If you play a game whereby you have a 
49% chance of winning $1 and a 51% of losing $1, you are best off 
betting on only 1 trial. The more trials you bet on, the greater the likeli-
hood you will lose, with the probability of losing approaching certainty 
as the length of the game approaches infinity. That isn't to say that you 
are in a positive expectation for the 1 trial, but you have at least mini-
mized the probabilities of being a loser by only playing 1 trial. 

Return now to a positive expectation game. We determined at the 
outset of this discussion that on any given trade, the quantity that a 
trader puts on can be expressed as a factor, f, between 0 and 1, that 
represents the trader's quantity with respect to both the perceived loss on 
the next trade and the trader's total equity. If you know you have an 
edge over N bets but you do not know which of those N bets will be 
winners (and for how much), and which will be losers (and for how 
much), you are best off (in the long run) treating each bet exactly the 
same in terms of what percentage of your total stake is at risk. This 
method of always trading a fixed fraction of your stake has shown time 
and again to be the best staking system. If there is dependency in your 
trades, where winners beget winners and losers beget losers, or vice 
versa, you are still best off betting a fraction of your total stake on each 
bet, but that fraction is no longer fixed. In such a case, the fraction must 
reflect the effect of this dependency (that is, if you have not yet 
"flushed" the dependency out of your system by creating system rules to 
exploit it). 

"Wait," you say. "Aren't staking systems foolish to begin with? 
Haven't we seen that they don't overcome the house advantage, they 
only increase our total action?" This is absolutely true for a situation 
with a negative mathematical expectation. For a positive mathematical 
expectation, it is a different story altogether. In a positive expectancy 
situation the trader/gambler is faced with the question of how best to 
exploit the positive expectation. 

OPTIMAL FIXED FRACTIONAL TRADING 
We have spent the course of this discussion laying the groundwork 

for this section. We have seen that in order to consider betting or trading 
a given situation or system you must first determine if a positive 
mathematical expectation exists. We have seen that what is seemingly a 
"good bet" on a mathematical expectation basis (i.e., the mathematical 
expectation is positive) may in fact not be such a good bet when you 
consider reinvestment of returns, if you are reinvesting too high a per-
centage of your winnings relative to the dispersion of outcomes of the 
system. Reinvesting returns never raises the mathematical expectation 
(as a percentage-although it can raise the mathematical expectation in 
terms of dollars, which it does geometrically, which is why we want to 
reinvest). If there is in fact a positive mathematical expectation, how-
ever small, the next step is to exploit this positive expectation to its full-
est potential. For an independent trials process, this is achieved by rein-
vesting a fixed fraction of your total stake. 2 

And how do we find this optimal f? Much work has been done in 
recent decades on this topic in the gambling community, the most fa-
mous and accurate of which is known as the Kelly Betting System. This 
is actually an application of a mathematical idea developed in early 
1956 by John L. Kelly, Jr.3 The Kelly criterion states that we should bet 
that fixed fraction of our stake (f) which maximizes the growth function 
G(f): 
(1.08) G(f) = P*ln(l+B*f)+(1 -P)*ln(l-f) 

where 
f = The optimal fixed fraction. 
P = The probability of a winning bet or trade. 

                                                                 
2 For a dependent trials process, just as for an independent trials process, the idea 
of betting a proportion of your total stake also yields the greatest exploitation of a 
positive mathematical expectation. However, in a dependent trials process you 
optimally bet a variable fraction of your total stake, the exact fraction for each 
individual bet being determined by the probabilities and payoffs involved for 
each individual bet. This is analogous to trading a dependent trials process as two 
separate market systems. 
3 Kelly, J. L., Jr., A New Interpretation of Information Rate, Bell System 
Technical Journal, pp. 917-926, July, 1956. 
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B = The ratio of amount won on a winning bet to amount lost on a 
losing bet. 

ln() = The natural logarithm function. 
As it turns out, for an event with two possible outcomes, this opti-

mal f4 can be found quite easily with the Kelly formulas. 

KELLY FORMULAS 
Beginning around the late 1940s, Bell System engineers were work-

ing on the problem of data transmission over long-distance lines. The 
problem facing them was that the lines were subject to seemingly ran-
dom, unavoidable "noise" that would interfere with the transmission. 
Some rather ingenious solutions were proposed by engineers at Bell 
Labs. Oddly enough, there are great similarities between this data com-
munications problem and the problem of geometric growth as pertains 
to gambling money management (as both problems are the product of an 
environment of favorable uncertainty). One of the outgrowths of these 
solutions is the first Kelly formula. The first equation here is: 
(1.09a) f = 2*P-l 

or 
(1.09b) f = P-Q 

where 
f = The optimal fixed fraction. 
P = The probability of a winning bet or trade. 
Q = The probability of a loss, (or the complement of P, equal to 1-

P). 
Both forms of Equation (1.09) are equivalent. 
Equation (l.09a) or (1.09b) will yield the correct answer for optimal 

f provided the quantities are the same for both wins and losses. As an 
example, consider the following stream of bets: 

-1, +1, +1,-1,-1, +1, +1, +1, +1,-1 
There are 10 bets, 6 winners, hence: 

f = (.6*2)-l = 1.2-1 = .2 
If the winners and losers were not all the same size, then this for-

mula would not yield the correct answer. Such a case would be our two-
to-one coin-toss example, where all of the winners were for 2 units and 
all of the losers for 1 unit. For this situation the Kelly formula is: 
(1.10a) f = ((B+1)*P-1)/B 

where 
f = The optimal fixed fraction. 
P = The probability of a winning bet or trade. 
B = The ratio of amount won on a winning bet to amount lost on a 

losing bet. 
In our two-to-one coin-toss example: 

f = ((2+ l).5-l)/2 
= (3*.5-l)/2 
= (1.5 -l)/2 
= .5/2 
= .25 

This formula will yield the correct answer for optimal f provided all 
wins are always for the same amount and all losses are always for the 
same amount. If this is not so, then this formula will not yield the cor-
rect answer. 

The Kelly formulas are applicable only to outcomes that have a 
Bernoulli distribution. A Bernoulli distribution is a distribution with 
two possible, discrete outcomes. Gambling games very often have a 
Bernoulli distribution. The two outcomes are how much you make when 
you win, and how much you lose when you lose. Trading, unfortunately, 
is not this simple. To apply the Kelly formulas to a non-Bernoulli distri-
bution of outcomes (such as trading) is a mistake. The result will not be 
the true optimal f. For more on the Bernoulli distribution, consult Ap-
pendix B. Consider the following sequence of bets/trades: 

+9, +18, +7, +1, +10, -5, -3, -17, -7 

                                                                 
4 As used throughout the text, f is always lowercase and in roman type. It is not to 
be confused with the universal constant, F, equal to 4.669201609…, pertaining to 
bifurcations in chaotic systems. 

Since this is not a Bernoulli distribution (the wins and losses are of 
different amounts), the Kelly formula is not applicable. However, let's 
try it anyway and see what we get. 

Since 5 of the 9 events are profitable, then P = .555. Now let's take 
averages of the wins and losses to calculate B (here is where so many 
traders go wrong). The average win is 9, and the average loss is 8. 
Therefore we say that B = 1.125. Plugging in the values we obtain: 
f = ((1.125+1) .555-1)/1.125  
= (2.125*.555-1)/1.125  
= (1.179375-1)/1.125  
= .179375/1.125  
= .159444444 

So we say f = .16. You will see later in this chapter that this is not 
the optimal f. The optimal f for this sequence of trades is .24. Applying 
the Kelly formula when all wins are not for the same amount and/or all 
losses are not for the same amount is a mistake, for it will not yield the 
optimal f. 

Notice that the numerator in this formula equals the mathematical 
expectation for an event with two possible outcomes as defined earlier. 
Therefore, we can say that as long as all wins are for the same amount 
and all losses are for the same amount (whether or not the amount that 
can be won equals the amount that can be lost), the optimal f is: 
(1.10b) f = Mathematical Expectation/B 

where 
f = The optimal fixed fraction. 
B = The ratio of amount won on a winning bet to amount lost on a 

losing bet. 
The mathematical expectation is defined in Equation (1.03), but 

since we must have a Bernoulli distribution of outcomes we must make 
certain in using Equation (1.10b) that we only have two possible out-
comes. 

Equation (l.l0a) is the most commonly seen of the forms of Equa-
tion (1.10) (which are all equivalent). However, the formula can be re-
duced to the following simpler form: 
(1.10c) f = P-Q/B 

where 
f = The optimal fixed fraction. 
P = The probability of a winning bet or trade. 
Q = The probability of a loss (or the complement of P, equal to 1-P). 

FINDING THE OPTIMAL F BY THE GEOMETRIC MEAN 
In trading we can count on our wins being for varying amounts and 

our losses being for varying amounts. Therefore the Kelly formulas 
could not give us the correct optimal f. How then can we find our opti-
mal f to know how many contracts to have on and have it be mathemati-
cally correct? 

Here is the solution. To begin with, we must amend our formula for 
finding HPRs to incorporate f: 
(1.11) HPR = 1+f*(-Trade/Biggest Loss) 

where 
f = The value we are using for f. 
-Trade = The profit or loss on a trade (with the sign reversed so that 

losses are positive numbers and profits are negative). 
Biggest Loss = The P&L that resulted in the biggest loss. (This 

should always be a negative number.) 
And again, TWR is simply the geometric product of the HPRs and 

geometric mean (G) is simply the Nth root of the TWR. 
(1.12) TWR = ∏[i = 1,N](1+f*(-Tradei/Biggest Loss)) 
(1.13) G = (∏[i = 1,N](1+f*(-Tradei/Biggest Loss))]^(1/N) 

where 
f = The value we are using for f. 
-Tradei = The profit or loss on the ith trade (with the sign reversed 

so that losses are positive numbers and profits are negative). 
Biggest Loss = The P&L that resulted in the biggest loss. (This 

should always be a negative number.) 
N = The total number of trades. 
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G = The geometric mean of the HPRs. 
By looping through all values for I between .01 and 1, we can find 

that value for f which results in the highest TWR. This is the value for 
f that would provide us with the maximum return on our money using 
fixed fraction. We can also state that the optimal f is the f that yields the 
highest geometric mean. It matters not whether we look for highest 
TWR or geometric mean, as both are maximized at the same value for f. 

Doing this with a computer is easy, since both the TWR curve and 
the geometric mean curve are smooth with only one peak. You simply 
loop from f = .01 to f = 1.0 by .01. As soon as you get a TWR that is 
less than the previous TWR, you know that the f corresponding to the 
previous TWR is the optimal f. You can employ many other search al-
gorithms to facilitate this process of finding the optimal f in the range of 
0 to 1. One of the fastest ways is with the parabolic interpolation search 
procedure detailed in portfolio Management Formulas. 

TO SUMMARIZE THUS FAR 
You have seen that a good system is the one with the highest geo-

metric mean. Yet to find the geometric mean you must know f. You may 
find this confusing. Here now is a summary and clarification of the 
process: 

Take the trade listing of a given market system. 
1. Find the optimal f, either by testing various f values from 0 to 1 or 
through iteration. The optimal f is that which yields the highest TWR. 
2. Once you have found f, you can take the Nth root of the TWR that 
corresponds to your f, where N is the total number of trades. This is 
your geometric mean for this market system. You can now use this 
geometric mean to make apples-to-apples comparisons with other mar-
ket systems, as well as use the f to know how many contracts to trade 
for that particular market system. 

Once the highest f is found, it can readily be turned into a dollar 
amount by dividing the biggest loss by the negative optimal f. For ex-
ample, if our biggest loss is $100 and our optimal f is .25, then -$100/-
.25 = $400. In other words, we should bet 1 unit for every $400 we have 
in our stake. 

If you're having trouble with some of these concepts, try thinking in 
terms of betting in units, not dollars (e.g., one $5 chip or one futures 
contract or one 100-share unit of stock). The number of dollars you 
allocate to each unit is calculated by figuring your largest loss divided 
by the negative optimal f. 

The optimal f is a result of the balance between a system's profit-
making ability (on a constant 1-unit basis) and its risk (on a constant 1-
unit basis). 

Most people think that the optimal fixed fraction is that percentage 
of your total stake to bet, This is absolutely false. There is an interim 
step involved. Optimal f is not in itself the percentage of your total stake 
to bet, it is the divisor of your biggest loss. The quotient of this division 
is what you divide your total stake by to know how many bets to make 
or contracts to have on. 

You will also notice that margin has nothing whatsoever to do with 
what is the mathematically optimal number of contracts to have on. 
Margin doesn't matter because the sizes of individual profits and losses 
are not the product of the amount of money put up as margin (they 
would be the same whatever the size of the margin). Rather, the profits 
and losses are the product of the exposure of 1 unit (1 futures contract). 
The amount put up as margin is further made meaningless in a money-
management sense, because the size of the loss is not limited to the 
margin. 

Most people incorrectly believe that f is a straight-line function ris-
ing up and to the right. They believe this because they think it would 
mean that the more you are willing to risk the more you stand to make. 
People reason this way because they think that a positive mathematical 
expectancy is just the mirror image of a negative expectancy. They mis-
takenly believe that if increasing your total action in a negative expec-
tancy game results in losing faster, then increasing your total action in a 
positive expectancy game will result in winning faster. This is not true. 
At some point in a positive expectancy situation, further increasing your 
total action works against you. That point is a function of both the sys-
tem's profitability and its consistency (i.e., its geometric mean), since 
you are reinvesting the returns back into the system. 

It is a mathematical fact that when two people face the same se-
quence of favorable betting or trading opportunities, if one uses the 
optimal f and the other uses any different money-management system, 
then the ratio of the optimal f bettor's stake to the other person's stake 
will increase as time goes on, with higher and higher probability. In the 
long run, the optimal f bettor will have infinitely greater wealth than any 
other money-management system bettor with a probability approaching 
1. Furthermore, if a bettor has the goal of reaching a specified fortune 
and is facing a series of favorable betting or trading opportunities, the 
expected time to reach the fortune will be lower (faster) with optimal f 
than with any other betting system. 

Let's go back and reconsider the following sequence of bets (trades): 
+9, +18, +7, +1, +10, -5, -3, -17, -7 
Recall that we determined earlier in this chapter that the Kelly for-

mula was not applicable to this sequence, because the wins were not all 
for the same amount and neither were the losses. We also decided to 
average the wins and average the losses and take these averages as our 
values into the Kelly formula (as many traders mistakenly do). Doing 
this we arrived at an f value of .16. It was stated that this is an incorrect 
application of Kelly, that it would not yield the optimal f. The Kelly 
formula must be specific to a single bet. You cannot average your wins 
and losses from trading and obtain the true optimal fusing the Kelly 
formula. 

Our highest TWR on this sequence of bets (trades) is obtained at 
.24, or betting $1 for every $71 in our stake. That is the optimal geomet-
ric growth you can squeeze out of this sequence of bets (trades) trading 
fixed fraction. Let's look at the TWRs at different points along 100 
loops through this sequence of bets. At 1 loop through (9 bets or trades), 
the TWR for f = ,16 is 1.085, and for f = .24 it is 1.096. This means that 
for 1 pass through this sequence of bets an f = .16 made 99% of what an 
f = .24 would have made. To continue: 
Passes 
Throe 

Total Bets 
or Trades 

TWR for 
f=.24 

TWR for 
f=.16 

Percentage 
Difference 

1  9  1.096  1.085  1  
10  90  2.494  2.261  9.4  
40  360  38.694  26.132  32.5  
100  900  9313.312 3490.761  62.5  

As can be seen, using an f value that we mistakenly figured from 
Kelly only made 37.5% as much as did our optimal f of .24 after 900 
bets or trades (100 cycles through the series of 9 outcomes). In other 
words, our optimal f of .24, which is only .08 different from .16 (50% 
beyond the optimal) made almost 267% the profit that f = .16 did after 
900 bets! 

Let's go another 11 cycles through this sequence of trades, so that 
we now have a total of 999 trades. Now our TWR for f = .16 is 
8563.302 (not even what it was for f = .24 at 900 trades) and our TWR 
for f = .24 is 25,451.045. At 999 trades f = .16 is only 33.6% off = .24, 
or f = .24 is 297% off = .16! 

As you see, using the optimal f does not appear to offer much ad-
vantage over the short run, but over the long run it becomes more and 
more important. The point is, you must give the program time when 
trading at the optimal f and not expect miracles in the short run. The 
more time (i.e., bets or trades) that elapses, the greater the difference 
between using the optimal f and any other money-management strat-
egy. 

GEOMETRIC AVERAGE TRADE 
At this point the trader may be interested in figuring his or her geo-

metric average trade-that is, what is the average garnered per contract 
per trade assuming profits are always reinvested and fractional contracts 
can be purchased. This is the mathematical expectation when you are 
trading on a fixed fractional basis. This figure shows you what effect 
there is by losers occurring when you have many contracts on and 
winners occurring when you have fewer contracts on. In effect, this 
approximates how a system would have fared per contract per trade 
doing fixed fraction. (Actually the geometric average trade is your 
mathematical expectation in dollars per contract per trade. The geomet-
ric mean minus 1 is your mathematical expectation per trade-a geomet-
ric mean of 1.025 represents a mathematical expectation of 2.5% per 
trade, irrespective of size.) Many traders look only at the average trade 
of a market system to see if it is high enough to justify trading the sys-
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tem. However, they should be looking at the geometric average trade 
(GAT) in making their decision. 
(1.14) GAT = G*(Biggest Loss/-f) 

where 
G = Geometric mean-1. 
f = Optimal fixed fraction. (and, of course, our biggest loss is al-

ways a negative number). 
For example, suppose a system has a geometric mean of 1.017238, 

the biggest loss is $8,000, and the optimal f is .31. Our geometric aver-
age trade would be: 
GAT = (1.017238-1)*(-$8,000/-.31)  
= .017238*$25,806.45  
= $444.85 

WHY YOU MUST KNOW YOUR OPTIMAL F 
The graph in Figure 1-6 further demonstrates the importance of us-

ing optimal fin fixed fractional trading. Recall our f curve for a 2:1 coin-
toss game, which was illustrated in Figure 1-1. 

Let's increase the winning payout from 2 units to 5 units as is dem-
onstrated in Figure 1-6. Here your optimal f is .4, or to bet $1 for every 
$2.50 in you stake. After 20 sequences of +5,-l (40 bets), your $2.50 
stake has grown to $127,482, thanks to optimal f. Now look what hap-
pens in this extremely favorable situation if you miss the optimal f by 
20%. At f values of .6 and .2 you don't make a tenth as much as you do 
at .4. This particular situation, a 50/50 bet paying 5 to 1, has a mathe-
matical expectation of (5*.5)+(1*(-.5)) = 2, yet if you bet using an f 
value greater than .8 you lose money. 
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Figure 1-6 20 sequences of +5, -1. 

Two points must be illuminated here. The first is that whenever we 
discuss a TWR, we assume that in arriving at that TWR we allowed 
fractional contracts along the way. In other words, the TWR assumes 
that you are able to trade 5.4789 contracts if that is called for at some 
point. It is because the TWR calculation allows for fractional contracts 
that the TWR will always be the same for a given set of trade outcomes 
regardless of their sequence. You may argue that in real life this is not 
the case. In real life you cannot trade fractional contracts. Your argu-
ment is correct. However, I am allowing the TWR to be calculated this 
way because in so doing we represent the average TWR for all possible 
starting stakes. If you require that all bets be for integer amounts, then 
the amount of the starting stake becomes important. However, if you 
were to average the TWRs from all possible starting stake 

values using integer bets only, you would arrive at the same TWR 
value that we calculate by allowing the fractional bet. Therefore, the 
TWR value as calculated is more realistic than if we were to constrain it 
to integer bets only, in that it is representative of the universe of out-
comes of different starting stakes. 

Furthermore, the greater the equity in the account, the more trading 
on an integer contract basis will be the same as trading on a fractional 
contract basis. The limit here is an account with an infinite amount of 
capital where the integer bet and fractional bet are for the same amounts 
exactly. 

This is interesting in that generally the closer you can stick to opti-
mal f, the better. That is to say that the greater the capitalization of an 
account, the greater will be the effect of optimal f. Since optimal f will 

make an account grow at the fastest possible rate, we can state that op-
timal f will make itself work better and better for you at the fastest pos-
sible rate. 

The graphs (Figures 1-1 and 1-6) bear out a few more interesting 
points. The first is that at no other fixed fraction will you make more 
money than you will at optimal f. In other words, it does not pay to bet 
$1 for every $2 in your stake in the earlier example of a 5:1 game. In 
such a case you would make more money if you bet $1 for every $2.50 
in your stake. It does not pay to risk more than the optimal f-in fact, 
you pay a price to do so! 

Obviously, the greater the capitalization of an account the more ac-
curately you can stick to optimal f, as the dollars per single contract 
required are a smaller percentage of the total equity. For example, sup-
pose optimal f for a given market system dictates you trade 1 contract 
for every $5,000 in an account. If an account starts out with $10,000 in 
equity, it will need to gain (or lose) 50% before a quantity adjustment is 
necessary. Contrast this to a $500,000 account, where there would be a 
contract adjustment for every 1% change in equity. Clearly the larger 
account can better take advantage of the benefits provided by optimal f 
than can the smaller account. Theoretically, optimal f assumes you can 
trade in infinitely divisible quantities, which is not the case in real life, 
where the smallest quantity you can trade in is a single contract. In the 
asymptotic sense this does not matter. But in the real-life integer-bet 
scenario, a good case could be presented for trading a market system 
that requires as small a percentage of the account equity as possible, 
especially for smaller accounts. But there is a tradeoff here as well. 
Since we are striving to trade in markets that would require us to trade 
in greater multiples than other markets, we will be paying greater com-
missions, execution costs, and slippage. Bear in mind that the amount 
required per contract in real life is the greater of the initial margin re-
quirement and the dollar amount per contract dictated by the optimal f. 

The finer you can cut it (i.e., the more frequently you can adjust the 
size of the positions you are trading so as to align yourself with what the 
optimal f dictates), the better off you are. Most accounts would therefore 
be better off trading the smaller markets. Corn may not seem like a very 
exciting market to you compared to the S&P's. Yet for most people the 
corn market can get awfully exciting if they have a few hundred con-
tracts on. 

Those who trade stocks or forwards (such as forex traders) have a 
tremendous advantage here. Since you must calculate your optimal f 
based on the outcomes (the P&Ls) on a 1-contract (1 unit) basis, you 
must first decide what 1 unit is in stocks or forex. As a stock trader, say 
you decide that I unit will be 100 shares. You will use the P&L stream 
generated by trading 100 shares on each and every trade to determine 
your optimal f. When you go to trade this particular stock (and let's say 
your system calls for trading 2.39 contracts or units), you will be able to 
trade the fractional part (the .39 part) by putting on 239 shares. Thus, by 
being able to trade the fractional part of 1 unit, you are able to take more 
advantage of optimal f. Likewise for forex traders, who must first decide 
what 1 contract or unit is. For the forex trader, 1 unit may be one million 
U.S. dollars or one million Swiss francs. 

THE SEVERITY OF DRAWDOWN 
It is important to note at this point that the drawdown you can ex-

pect with fixed fractional trading, as a percentage retracement of your 
account equity, historically would have been at least as much as f per-
cent. In other words if f is .55, then your drawdown would have been at 
least 55% of your equity (leaving you with 45% at one point). This is so 
because if you are trading at the optimal f, as soon as your biggest loss 
was hit, you would experience the drawdown equivalent to f. Again, 
assuming that f for a system is .55 and assuming that translates into 
trading 1 contract for every $10,000, this means that your biggest loss 
was $5,500. As should by now be obvious, when the biggest loss was 
encountered (again we're speaking historically what would have hap-
pened), you would have lost $5,500 for each contract you had on, and 
would have had 1 contract on for every $10,000 in the account. At that 
point, your drawdown is 55% of equity. Moreover, the drawdown might 
continue: The next trade or series of trades might draw your account 
down even more. Therefore, the better a system, the higher the f. The 
higher the f, generally the higher the drawdown, since the drawdown (in 
terms of a percentage) can never be any less than the f as a percentage. 
There is a paradox involved here in that if a system is good enough to 
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generate an optimal f that is a high percentage, then the drawdown for 
such a good system will also be quite high. Whereas optimal fallows 
you to experience the greatest geometric growth, it also gives you 
enough rope to hang yourself with. 

Most traders harbor great illusions about the severity of drawdowns. 
Further, most people have fallacious ideas regarding the ratio of poten-
tial gains to dispersion of those gains. 

We know that if we are using the optimal f when we are fixed frac-
tional trading, we can expect substantial drawdowns in terms of percent-
age equity retracements. Optimal f is like plutonium. It gives you a tre-
mendous amount of power, yet it is dreadfully dangerous. These sub-
stantial drawdowns are truly a problem, particularly for notices, in that 
trading at the optimal f level gives them the chance to experience a cata-
clysmic loss sooner than they ordinarily might have. Diversification can 
greatly buffer the drawdowns. This it does, but the reader is warned not 
to expect to eliminate drawdown. In fact, the real benefit of diversifica-
tion is that it lets you get off many more trials, many more plays, in the 
same time period, thus increasing your total profit. Diversification, 
although usually the best means by which to buffer drawdowns, does 
not necessarily reduce drawdowns, and in some instances, may actually 
increase them! 

Many people have the mistaken impression that drawdown can be 
completely eliminated if they diversify effectively enough. To an extent 
this is true, in that drawdowns can be buffered through effective diversi-
fication, but they can never be completely eliminated. Do not be de-
luded. No matter how good the systems employed are, no matter how 
effectively you diversify, you will still encounter substantial draw-
downs. The reason is that no matter of how uncorrelated your market 
systems are, there comes a period when most or all of the market sys-
tems in your portfolio zig in unison against you when they should be 
zagging. You will have enormous difficulty finding a portfolio with at 
least 5 years of historical data to it and all market systems employing the 
optimal f that has had any less than a 30% drawdown in terms of equity 
retracement! This is regardless of how many market systems you em-
ploy. If you want to be in this and do it mathematically correctly, you 
better expect to be nailed for 30% to 95% equity retracements. This 
takes enormous discipline, and very few people can emotionally handle 
this. 

When you dilute f, although you reduce the drawdowns arithmeti-
cally, you also reduce the returns geometrically. Why commit funds to 
futures trading that aren't necessary simply to flatten out the equity 
curve at the expense of your bottom-line profits? You can diversify 
cheaply somewhere else. 

Any time a trader deviates from always trading the same constant 
contract size, he or she encounters the problem of what quantities to 
trade in. This is so whether the trader recognizes this problem or not. 
Constant contract trading is not the solution, as you can never experi-
ence geometric growth trading constant contract. So, like it or not, the 
question of what quantity to take on the next trade is inevitable for eve-
ryone. To simply select an arbitrary quantity is a costly mistake. Opti-
mal f is factual; it is mathematically correct. 

MODERN PORTFOLIO THEORY 
Recall the paradox of the optimal f and a market system's draw-

down. The better a market system is, the higher the value for f. Yet the 
drawdown (historically) if you are trading the optimal f can never be 
lower than f. Generally speaking, then, the better the market system is, 
the greater the drawdown will be as a percentage of account equity if 
you are trading optimal f. That is, if you want to have the greatest geo-
metric growth in an account, then you can count on severe drawdowns 
along the way. 

Effective diversification among other market systems is the most ef-
fective way in which this drawdown can be buffered and conquered 
while still staying close to the peak of the f curve (i.e., without hating to 
trim back to, say, f/2). When one market system goes into a drawdown, 
another one that is being traded in the account will come on strong, thus 
canceling the draw-down of the other. This also provides for a catalytic 
effect on the entire account. The market system that just experienced the 
drawdown (and now is getting back to performing well) will have no 
less funds to start with than it did when the drawdown began (thanks to 
the other market system canceling out the drawdown). Diversification 
won't hinder the upside of a system (quite the reverse-the upside is far 

greater, since after a drawdown you aren't starting back with fewer con-
tracts), yet it will buffer the downside (but only to a very limited extent). 

There exists a quantifiable, optimal portfolio mix given a group of 
market systems and their respective optimal fs. Although we cannot be 
certain that the optimal portfolio mix in the past will be optimal in the 
future, such is more likely than that the optimal system parameters of 
the past will be optimal or near optimal in the future. Whereas optimal 
system parameters change quite quickly from one time period to an-
other, optimal portfolio mixes change very slowly (as do optimal f val-
ues). Generally, the correlations between market systems tend to remain 
constant. This is good news to a trader who has found the optimal port-
folio mix, the optimal diversification among market systems. 

THE MARKOVITZ MODEL 
The basic concepts of modern portfolio theory emanate from a 

monograph written by Dr. Harry Markowitz.5 Essentially, Markowitz 
proposed that portfolio management is one of composition, not individ-
ual stock selection as is more commonly practiced. Markowitz argued 
that diversification is effective only to the extent that the correlation 
coefficient between the markets involved is negative. If we have a port-
folio composed of one stock, our best diversification is obtained if we 
choose another stock such that the correlation between the two stock 
prices is as low as possible. The net result would be that the portfolio, as 
a whole (composed of these two stocks with negative correlation), 
would have less variation in price than either one of the stocks alone. 

Markowitz proposed that investors act in a rational manner and, 
given the choice, would opt for a similar portfolio with the same return 
as the one they have, but with less risk, or opt for a portfolio with a 
higher return than the one they have but with the same risk. Further, for 
a given level of risk there is an optimal portfolio with the highest yield, 
and likewise for a given yield there is an optimal portfolio with the low-
est risk. An investor with a portfolio whose yield could be increased 
with no resultant increase in risk, or an investor with a portfolio whose 
risk could be lowered with no resultant decrease in yield, are said to 
have inefficient portfolios. Figure 1-7 shows all of the available portfo-
lios under a given study. If you hold portfolio C, you would be better off 
with portfolio A, where you would have the same return with less risk, 
or portfolio B, where you would have more return with the same risk.  
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0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325 0.330

A

B

C

 
Figure 1-7 Modern portfolio theory. 

In describing this, Markowitz described what is called the efficient 
frontier. This is the set of portfolios that lie on the upper and left sides 
of the graph. These are portfolios whose yield can no longer be in-
creased without increasing the risk and whose risk cannot be lowered 
without lowering the yield. Portfolios lying on the efficient frontier are 
said to be efficient portfolios. (See Figure 1-8.) 

                                                                 
5 Markowitz, H., Portfolio Selection—Efficient Diversification of Investments. 
Yale University Press, New Haven, Conn., 1959. 
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Figure 1-8 The efficient frontier 

Those portfolios lying high and off to the right and low and to the 
left are generally not very well diversified among very many issues. 
Those portfolios lying in the middle of the efficient frontier are usually 
very well diversified. Which portfolio a particular investor chooses is a 
function of the investor's risk aversion-Ms or her willingness to assume 
risk. In the Markowitz model any portfolio that lies upon the efficient 
frontier is said to be a good portfolio choice, but where on the efficient 
frontier is a matter of personal preference (later on we'll see that there is 
an exact optimal spot on the efficient frontier for all investors). 

The Markowitz model was originally introduced as applying to a 
portfolio of stocks that the investor would hold long. Therefore, the 
basic inputs were the expected returns on the stocks (defined as the ex-
pected appreciation in share price plus any dividends), the expected 
variation in those returns, and the correlations of the different returns 
among the different stocks. If we were to transport this concept to fu-
tures it would stand to reason (since futures don't pay any dividends) 
that we measure the expected price gains, variances, and correlations of 
the different futures. 

The question arises, "If we are measuring the correlation of prices, 
what if we have two systems on the same market that are negatively 
correlated?" In other words, suppose we have systems A and B. There is 
a perfect negative correlation between the two. When A is in a draw-
down, B is in a drawup and vice versa. Isn't this really an ideal diversifi-
cation? What we really want to measure then is not the correlations of 
prices of the markets we're using. Rather, we want to measure the cor-
relations of daily equity changes between the different market system. 

Yet this is still an apples-and-oranges comparison. Say that two of 
the market systems we are going to examine the correlations on are both 
trading the same market, yet one of the systems has an optimal f corre-
sponding to I contract per every $2,000 in account equity and the other 
system has an optimal f corresponding to 1 contract per every $10,000 
in account equity. To overcome this and incorporate the optimal fs of 
the various market systems under consideration, as well as to account 
for fixed fractional trading, we convert the daily equity changes for a 
given market system into daily HPRs. The HPR in this context is how 
much a particular market made or lost for a given day on a 1-contract 
basis relative to what the optimal f for that system is. Here is how this 
can be solved. Say the market system with an optimal f of $2,000 made 
$100 on a given day. The HPR then for that market system for that day 
is 1.05. To find the daily HPR, then: 
(1.15) Daily HPR = (A/B)+1 

where 
A = Dollars made or lost that day. 
B = Optimal fin dollars. 
We begin by converting the daily dollar gains and losses for the 

market systems we are looking at into daily HPRs relative to the optimal 
fin dollars for a given market system. In so doing, we make quantity 
irrelevant. In the example just cited, where your daily HPR is 1.05, you 
made 5% that day on that money. This is 5% regardless of whether you 
had on 1 contract or 1,000 contracts. 

Now you are ready to begin comparing different portfolios. The 
trick here is to compare every possible portfolio combination, from port-
folios of 1 market system (for every market system under consideration) 
to portfolios of N market systems. 

As an example, suppose you are looking at market systems A, B, 
and C. Every combination would be: 
A 
B 
C 
AB 
AC 
BC 
ABC 

But you do not stop there. For each combination you must figure 
each Percentage allocation as well. To do so you will need to have a 
minimum Percentage increment. The following example, continued 
from the portfolio A, B, C example, illustrates this with a minimum 
portfolio allocation of 10% (.10): 
A 100% 
B 100% 
C 100% 
AB 90% 10% 
 80% 20% 
 70% 30% 
 60% 40% 
 50% 50% 
 40% 60% 
 30% 70% 
 20% 80% 
 10% 90% 
AC 90% 10% 
 80% 20% 
 70% 30% 
 60% 40% 
 50% 50% 
 40% 60% 
 30% 70% 
 20% 80% 
 10% 90% 
B C 90% 10% 
 80% 20% 
 70% 30% 
 60% 40% 
 50% 50% 
 40% 60% 
 30% 70% 
 20% 80% 
 10% 90% 
ABC 80% 10% 10% 
 70% 20% 10% 
 70% 10% 20% 
 10% 30% 60% 
 10% 20% 70% 
 10% 10% 80% 

Now for each CPA we go through each day and compute a net HPR 
for each day. The net HPR for a given day is the sum of each market 
system's HPR for that day times its percentage allocation. For example, 
suppose for systems A, B, and C we are looking at percentage alloca-
tions of 10%, 50%, 40% respectively. Further, suppose that the individ-
ual HPRs for those market systems for that day are .9, 1.4, and 1.05 
respectively. Then the net HPR for this day is: 
Net HPR = (.9*.1)+(1.4*.5)+(1.05*.4)  
= .09+.7+.42  
= 1.21 

We must perform now two necessary tabulations. The first is that of 
the average daily net HPR for each CPA. This comprises the reward or 
Y axis of the Markowitz model. The second necessary tabulation is that 
of the standard deviation of the daily net HPRs for a given CPA-
specifically, the population standard deviation. This measure corre-
sponds to the risk or X axis of the Markowitz model. 

Modern portfolio theory is often called E-V Theory, corresponding 
to the other names given the two axes. The vertical axis is often called 
E, for expected return, and the horizontal axis V, for variance in ex-
pected returns. 

From these first two tabulations we can find our efficient frontier. 
We have effectively incorporated various markets, systems, and f fac-
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tors, and we can now see quantitatively what our best CPAs are (i.e., 
which CPAs lie along the efficient frontier). 

THE GEOMETRIC MEAN PORTFOLIO STRATEGY 
Which particular point on the efficient frontier you decide to be on 

(i.e., which particular efficient CPA) is a function of your own risk-
aversion preference, at least according to the Markowitz model. How-
ever, there is an optimal point to be at on the efficient frontier, and find-
ing this point is mathematically solvable. 

If you choose that CPA which shows the highest geometric mean of 
the HPRs, you will arrive at the optimal CPA! We can estimate the 
geometric mean from the arithmetic mean HPR and the population stan-
dard deviation of the HPRs (both of which are calculations we already 
have, as they are the X and Y axes for the Markowitz model!). Equa-
tions (1.16a) and (l.16b) give us the formula for the estimated geometric 
mean (EGM). This estimate is very close (usually within four or five 
decimal places) to the actual geometric mean, and it is acceptable to use 
the estimated geometric mean and the actual geometric mean inter-
changeably. 
(1.16a) EGM = (AHPR^2-SD^2)^(1/2) 

or 
(l.16b) EGM = (AHPR^2-V)^(1/2) 

where 
EGM = The estimated geometric mean. 
AHPR = The arithmetic average HPR, or the return coordinate of 

the portfolio. 
SD = The standard deviation in HPRs, or the risk coordinate of the 

portfolio. 
V = The variance in HPRs, equal to SD^2. 
Both forms of Equation (1.16) are equivalent. 
The CPA with the highest geometric mean is the CPA that will 

maximize the growth of the portfolio value over the long run; fur-
thermore it will minimize the time required to reach a specified level of 
equity. 

DAILY PROCEDURES FOR USING OPTIMAL PORTFO-
LIOS 

At this point, there may be some question as to how you implement 
this portfolio approach on a day-to-day basis. Again an example will be 
used to illustrate. Suppose your optimal CPA calls for you to be in three 
different market systems. In this case, suppose the percentage alloca-
tions are 10%, 50%, and 40%. If you were looking at a $50,000 account, 
your account would be "subdivided" into three accounts of $5,000, 
$25,000, and $20,000 for each market system (A, B, and C) respec-
tively. For each market system's subaccount balance you then figure 
how many contracts you could trade. Say the f factors dictated the fol-
lowing: 

Market system A, 1 contract per $5,000 in account equity. 
Market system B, 1 contract per $2,500 in account equity. 
Market system C, l contract per $2,000 in account equity. 
You would then be trading 1 contract for market system A 

($5,000/$5,000), 10 contracts for market system B ($25,000/$2,500), 
and 10 contracts for market system C ($20,000/$2,000). 

Each day, as the total equity in the account changes, all subaccounts 
are recapitalized. What is meant here is, suppose this $50,000 account 
dropped to $45,000 the next day. Since we recapitalize the subaccounts 
each day, we then have $4,500 for market system subaccount A, 
$22,500 for market system subaccount B, and $18,000 for market sys-
tem subaccount C, from which we would trade zero contracts the next 
day on market system A ($4,500 7 $5,000 = .9, or, since we always 
floor to the integer, 0), 9 contracts for market system B 
($22,500/$2,500), and 9 contracts for market system C 
($18,000/$2,000). You always recapitalize the subaccounts each day 
regardless of whether there was a profit or a loss. Do not be confused. 
Subaccount, as used here, is a mental construct. 

Another way of doing this that will give us the same answers and 
that is perhaps easier to understand is to divide a market system's opti-
mal f amount by its percentage allocation. This gives us a dollar amount 
that we then divide the entire account equity by to know how many 

contracts to trade. Since the account equity changes daily, we recapital-
ize this daily to the new total account equity. In the example we have 
cited, market system A, at an f value of 1 contract per $5,000 in account 
equity and a percentage allocation of 10%, yields 1 contract per $50,000 
in total account equity ($5,000/.10). Market system B, at an f value of 1 
contract per $2,500 in account equity and a percentage allocation of 
50%, yields 1 contract per $5,000 in total account equity ($2,500/.50). 
Market system C, at an f value of 1 contract per $2,000 in account eq-
uity and a percentage allocation of 40%, yields 1 contract per $5,000 in 
total account equity ($2,000/.40). Thus, if we had $50,000 in total ac-
count equity, we would trade 1 contract for market system A, 10 con-
tracts for market system B, and 10 contracts for market system C. 

Tomorrow we would do the same thing. Say our total account eq-
uity got up to $59,000. In this case, dividing $59,000 into $50,000 yields 
1.18, which floored to the integer is 1, so we would trade 1 contract for 
market system A tomorrow. For market system B, we would trade 11 
contracts ($59,000/$5,000 = 11.8, which floored to the integer = 11). 
For market system C we would also trade 11 contracts, since market 
system C also trades 1 contract for every $5,000 in total account equity. 

Suppose we have a trade on from market system C yesterday and 
we are long 10 contracts. We do not need to go in and add another today 
to bring us up to 11 contracts. Rather the amounts we are calculating 
using the equity as of the most recent close mark-to-market is for new 
positions only. So for tomorrow, since we have 10 contracts on, if we 
get stopped out of this trade (or exit it on a profit target), we will be 
going 11 contracts on a new trade if one should occur. Determining our 
optimal portfolio using the daily HPRs means that we should go in and 
alter our positions on a day-by-day rather than a trade-by-trade basis, 
but this really isn't necessary unless you are trading a longer-term sys-
tem, and then it may not be beneficial to adjust your position size on a 
day-by-day basis due to increased transaction costs. In a pure sense, you 
should adjust your positions on a day-by-day basis. In real life, you are 
usually almost as well off to alter them on a trade-by-trade basis, with 
little loss of accuracy. 

This matter of implementing the correct daily positions is not such a 
problem. Recall that in finding the optimal portfolio we used the daily 
HPRs as input, We should therefore adjust our position size daily (if we 
could adjust each position at the price it closed at yesterday). In real life 
this becomes impractical, however, as transaction costs begin to out-
weigh the benefits of adjusting our positions daily and may actually cost 
us more than the benefit of adjusting daily. We are usually better off 
adjusting only at the end of each trade. The fact that the portfolio is 
temporarily out of balance after day 1 of a trade is a lesser price to pay 
than the cost of adjusting the portfolio daily. 

On the other hand, if we take a position that we are going to hold for 
a year, we may want to adjust such a position daily rather than adjust it 
more than a year from now when we take another trade. Generally, 
though, on longer-term systems such as this we are better off adjusting 
the position each week, say, rather than each day. The reasoning here 
again is that the loss in efficiency by having the portfolio temporarily 
out of balance is less of a price to pay than the added transaction costs of 
a daily adjustment. You have to sit down and determine which is the 
lesser penalty for you to pay, based upon your trading strategy (i.e., how 
long you are typically in a trade) as well as the transaction costs in-
volved. 

How long a time period should you look at when calculating the op-
timal portfolios? Just like the question, "How long a time period should 
you look at to determine the optimal f for a given market system?" there 
is no definitive answer here. Generally, the more back data you use, the 
better should be your result (i.e., that the near optimal portfolios in the 
future will resemble what your study concluded were the near optimal 
portfolios). However, correlations do change, albeit slowly. One of the 
problems with using too long a time period is that there will be a ten-
dency to use what were yesterday's hot markets. For instance, if you ran 
this program in 1983 over 5 years of back data you would most likely 
have one of the precious metals show very clearly as being a part of the 
optimal portfolio. However, the precious metals did very poorly for 
most trading systems for quite a few years after the 1980-1981 markets. 
So you see there is a tradeoff between using too much past history and 
too little in the determination of the optimal portfolio of the future. 

Finally, the question arises as to how often you should rerun this en-
tire procedure of finding the optimal portfolio. Ideally you should run 
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this on a continuous basis. However, rarely will the portfolio composi-
tion change. Realistically you should probably run this about every 3 
months. Even by running this program every 3 months there is still a 
high likelihood that you will arrive at the same optimal portfolio compo-
sition, or one very similar to it, that you arrived at before. 

ALLOCATIONS GREATER THAN 100% 
Thus far, we have been restricting the sum of the percentage alloca-

tions to 100%. It is quite possible that the sum of the percentage alloca-
tions for the portfolio that would result in the greatest geometric growth 
would exceed 100%. Consider, for instance, two market systems, A and 
B, that are identical in every respect, except that there is a negative cor-
relation (R<0) between them. Assume that the optimal f, in dollars, for 
each of these market systems is $5,000. Suppose the optimal portfolio 
(based on highest geomean) proves to be that portfolio that allocates 
50% to each of the two market systems. This would mean that you 
should trade 1 contract for every $10,000 in equity for market system A 
and likewise for B. When there is negative correlation, however, it can 
be shown that the optimal account growth is actually obtained by trading 
1 contract for an amount less than $10,000 in equity for market system 
A and/or market system B. In other words, when there is negative corre-
lation, you can have the sum of percentage allocations exceed 100%. 
Further, it is possible, although not too likely, that the individual per-
centage allocations to the market systems may exceed 100% individu-
ally. 

It is interesting to consider what happens when the correlation be-
tween two market systems approaches -1.00. When such an event oc-
curs, the amount to finance trades by for the market systems tends to 
become infinitesimal. This is so because the portfolio, the net result of 
the market systems, tends to never suffer a losing day (since an amount 
lost by a market system on a given day is offset by the same amount 
being won by a different market system in the portfolio that day). There-
fore, with diversification it is possible to have the optimal portfolio allo-
cate a smaller f factor in dollars to a given market system than trading 
that market system alone would. 

To accommodate this, you can divide the optimal f in dollars for 
each market system by the number of market systems you are running. 
In our example, rather than inputting $5,000 as the optimal f for market 
system A, we would input $2,500 (dividing $5,000, the optimal f, by 2, 
the number of market systems we are going to run), and likewise for 
market system B. 

Now when we use this procedure to determine the optimal geomean 
portfolio as being the one that allocates 50% to A and 50% to B, it 
means that we should trade 1 contract for every $5,000 in equity for 
market system A ($2,500/.5) and likewise for B. 

You must also make sure to use cash as another market system. This 
is non-interest-bearing cash, and it has an HPR of 1.00 for every day. 
Suppose in our previous example that the optimal growth is obtained at 
50% in market system A and 40% in market system B. In other words, 
to trade 1 contract for every $5,000 in equity for market system A and 1 
contract for every $6,250 for B ($2,500/.4). If we were using cash as 
another market system, this would be a possible combination (showing 
the optimal portfolio as having the remaining 10% in cash). If we were 
not using cash as another market system, this combination wouldn't be 
possible. 

If your answer obtained by using this procedure does not include the 
non-interest-bearing cash as one of the output components, then you 
must raise the factor you are using to divide the optimal fs in dollars you 
are using as input. Returning to our example, suppose we used non-
interest-bearing cash with the two market systems A and B. Further 
suppose that our resultant optimal portfolio did not include at least some 
percentage allocation to non-interest bearing cash. Instead, suppose that 
the optimal portfolio turned out to be 60% in market system A and 40% 
in market system B (or any other percentage combination, so long as 
they added up to 100% as a sum for the percentage allocations for the 
two market systems) and 0% allocated to non-interest-bearing cash. This 
would mean that even though we divided our optimal fs in dollars by 
two, that was not enough, We must instead divide them by a number 
higher than 2. So we will go back and divide our optimal fs in dollars by 
3 or 4 until we get an optimal portfolio which includes a certain percent-
age allocation to non-interest-bearing cash. This will be the optimal 
portfolio. Of course, in real life this does not mean that we must actually 

allocate any of our trading capital to non-interest-bearing cash, Rather, 
the non-interest-bearing cash was used to derive the optimal amount of 
funds to allocate for 1 contract to each market system, when viewed in 
light of each market system's relationship to each other market system. 

Be aware that the percentage allocations of the portfolio that would 
have resulted in the greatest geometric growth in the past can be in ex-
cess of 100% and usually are. This is accommodated for in this tech-
nique by dividing the optimal f in dollars for each market system by a 
specific integer (which usually is the number of market systems) and 
including non-interest-bearing cash (i.e., a market system with an HPR 
of 1.00 every day) as another market system. The correlations of the 
different market systems can have a profound effect on a portfolio. It is 
important that you realize that a portfolio can be greater than the sum of 
its parts (if the correlations of its component parts are low enough). It is 
also possible that a portfolio may be less than the sum of its parts (if the 
correlations are too high). 

Consider again a coin-toss game, a game where you win $2 on 
heads and lose $1 on tails. Such a game has a mathematical expectation 
(arithmetic) of fifty cents. The optimal f is .25, or bet $1 for every $4 in 
your stake, and results in a geometric mean of 1.0607. Now consider a 
second game, one where the amount you can win on a coin toss is $.90 
and the amount you can lose is $1.10. Such a game has a negative 
mathematical expectation of -$.10, thus, there is no optimal f, and there-
fore no geometric mean either. 

Consider what happens when we play both games simultaneously. If 
the second game had a correlation coefficient of 1.0 to the first-that is, if 
we won on both games on heads or both coins always came up either 
both heads or both tails, then the two possible net outcomes would be 
that we win $2.90 on heads or lose $2.10 on tails. Such a game would 
have a mathematical expectation then of $.40, an optimal f of .14, and a 
geometric mean of 1.013. Obviously, this is an inferior approach to just 
trading the positive mathematical expectation game. 

Now assume that the games are negatively correlated. That is, when 
the coin on the game with the positive mathematical expectation comes 
up heads, we lose the $1.10 of the negative expectation game and vice 
versa. Thus, the net of the two games is a win of $.90 if the coins come 
up heads and a loss of -$.10 if the coins come up tails. The mathematical 
expectation is still $.40, yet the optimal f is .44, which yields a geomet-
ric mean of 1.67. Recall that the geometric mean is the growth factor on 
your stake on average per play. This means that on average in this game 
we would expect to make more than 10 times as much per play as in the 
outright positive mathematical expectation game. Yet this result is ob-
tained by taking that positive mathematical expectation game and com-
bining it with a negative expectation game. The reason for the dramatic 
difference in results is due to the negative correlation between the two 
market systems. Here is an example where the portfolio is greater than 
the sum of its parts. 

Yet it is also important to bear in mind that your drawdown, histori-
cally, would have been at least as high as f percent in terms of percent-
age of equity retraced. In real life, you should expect that in the future it 
will be higher than this. This means that the combination of the two 
market systems, even though they are negatively correlated, would have 
resulted in at least a 44% equity retracement. This is higher than the 
outright positive mathematical expectation which resulted in an optimal 
f of .25, and therefore a minimum historical drawdown of at least 25% 
equity retracement. The moral is clear. Diversification, if done properly, 
is a technique that increases returns. It does not necessarily reduce 
worst-case drawdowns. This is absolutely contrary to the popular no-
tion. 

Diversification will buffer many of the little pullbacks from equity 
highs, but it does not reduce worst-case drawdowns. Further, as we have 
seen with optimal f, drawdowns are far greater than most people imag-
ine. Therefore, even if you are very well diversified, you must still ex-
pect substantial equity retracements. 

However, let's go back and look at the results if the correlation coef-
ficient between the two games were 0. In such a game, whatever the 
results of one toss were would have no bearing on the results of the 
other toss. Thus, there are four possible outcomes: 
Game 1  Game 2  Net  
Outcome Amount Outcome Amount Outcome Amount 
Win $2.00 Win $.90 Win $2.90 
Win $2.00 Lose -$1.10 Win $.90 
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Game 1  Game 2  Net  
Outcome Amount Outcome Amount Outcome Amount 
Lose -$1.00 Win $.90 Lose -S.10 
Lose -$1 .00 Lose -$1.10 Lose -$2.10 

The mathematical expectation is thus: 
ME = 2.9*.25+.9*.25-.1*.25-2.1*.25 = .725+.225-.025-.525 = .4 

Once again, the mathematical expectation is $.40. The optimal f on 
this sequence is .26, or 1 bet for every $8.08 in account equity (since the 
biggest loss here is -$2.10). Thus, the least the historical drawdown may 
have been was 26% (about the same as with the outright positive expec-
tation game). However, here is an example where there is buffering of 
the equity retracements. If we were simply playing the outright positive 
expectation game, the third sequence would have hit us for the maxi-
mum drawdown. Since we are combining the two systems, the third 
sequence is buffered. But that is the only benefit. The resultant geomet-
ric mean is 1.025, less than half the rate of growth of playing just the 
outright positive expectation game. We placed 4 bets in the same time as 
we would have placed 2 bets in the outright positive expectation game, 
but as you can see, still didn't make as much money: 
1.0607^2 = 1.12508449 1.025^ 4 = 1.103812891 

Clearly, when you diversify you must use market systems that have 
as low a correlation in returns to each other as possible and preferably a 
negative one. You must realize that your worst-case equity retracement 
will hardly be helped out by the diversification, although you may be 
able to buffer many of the other lesser equity retracements. The most 
important thing to realize about diversification is that its greatest 
benefit is in what it can do to improve your geometric mean. The tech-
nique for finding the optimal portfolio by looking at the net daily HPRs 
eliminates having to look at how many trades each market system ac-
complished in determining optimal portfolios. Using the technique al-
lows you to look at the geometric mean alone, without regard to the 
frequency of trading. Thus, the geometric mean becomes the single 
statistic of how beneficial a portfolio is. There is no benefit to be ob-
tained by diversifying into more market systems than that which results 
in the highest geometric mean. This may mean no diversification at all if 
a portfolio of one market system results in the highest geometric mean. 
It may also mean combining market systems that you would never want 
to trade by themselves. 

HOW THE DISPERSION OF OUTCOMES AFFECTS GEO-
METRIC GROWTH 

Once we acknowledge the fact that whether we want to or not, 
whether consciously or not, we determine our quantities to trade in as a 
function of the level of equity in an account, we can look at HPRs in-
stead of dollar amounts for trades. In so doing, we can give money man-
agement specificity and exactitude. We can examine our money-
management strategies, draw rules, and make conclusions. One of the 
big conclusions, one that will no doubt spawn many others for us, re-
gards the relationship of geometric growth and the dispersion of out-
comes (HPRs). 

This discussion will use a gambling illustration for the sake of sim-
plicity. Consider two systems, System A, which wins 10% of the time 
and has a 28 to 1 win/loss ratio, and System B, which wins 70% of the 
time and has a 1 to 1 win/loss ratio. Our mathematical expectation, per 
unit bet, for A is 1.9 and for B is .4. We can therefore say that for every 
unit bet System A will return, on average, 4.75 times as much as System 
B. But let's examine this under fixed fractional trading. We can find our 
optimal fs here by dividing the mathematical expectations by the 
win/loss ratios. This gives us an optimal f of .0678 for A and .4 for B. 
The geometric means for each system at their optimal f levels are then: 
A = 1.044176755 
B = 1.0857629 
System % Wins Win:Loss ME f Geomean 
A  10  28:1  1.9 .0678 1.0441768 
B  70  1:1  .4 .4 1.0857629 

As you can see, System B, although less than one quarter the 
mathematical expectation of A, makes almost twice as much per bet 
(returning 8.57629% of your entire stake per bet on average when you 
reinvest at the optimal f levels) as does A (which returns 4.4176755% of 
your entire stake per bet on average when you reinvest at the optimal f 
levels). 

Now assuming a 50% drawdown on equity will require a 100% gain 
to recoup, then 1.044177 to the power of X is equal to 2.0 at approxi-
mately X equals 16.5, or more than 16 trades to recoup from a 50% 
drawdown for System A. Contrast this to System B, where 1.0857629 to 
the power of X is equal to 2.0 at approximately X equals 9, or 9 trades 
for System B to recoup from a 50% drawdown. 

What's going on here? Is this because System B has a higher per-
centage of winning trades? The reason B is outperforming A has to do 
with the dispersion of outcomes and its effect on the growth function. 
Most people have the mistaken impression that the growth function, the 
TWR, is: 
(1.17) TWR = (1+R)^N 

where 
R = The interest rate per period (e.g., 7% = .07). 
N = The number of periods. 
Since 1+R is the same thing as an HPR, we can say that most people 

have the mistaken impression that the growth function,6 the TWR, is: 
(1.18) TWR = HPR^N 

This function is only true when the return (i.e., the HPR) is constant, 
which is not the case in trading. 

The real growth function in trading (or any event where the HPR is 
not constant) is the multiplicative product of the HPRs. Assume we are 
trading coffee, our optimal f is 1 contract for every $21,000 in equity, 
and we have 2 trades, a loss of $210 and a gain of $210, for HPRs of .99 
and 1.01 respectively. In this example our TWR would be: 

TWR = 1.01*.99 = .9999 
An insight can be gained by using the estimated geometric mean 

(EGM) for Equation (1.16a): 
(1.16a) EGM = (AHPR^2-SD^2)^(1/2) 

or 
(1.16b) EGM = (AHPR^2-V)^(1/2) 

Now we take Equation (1.16a) or (1.16b) to the power of N to esti-
mate the TWR. This will very closely approximate the "multiplicative" 
growth function, the actual TWR: 
(1.19a) Estimated TWR = ((AHPR^2-SD^2)^(1/2))^N 

or 
(1.19b) Estimated TWR = ((AHPR^2-V)^(1/2))^N 

where 
N = The number of periods. 
AHPR = The arithmetic mean HPR. 
SD = The population standard deviation in HPRs. 
V = The population variance in HPRs. 
The two equations in (1.19) are equivalent. 
The insight gained is that we can see here, mathematically, the 

tradeoff between an increase in the arithmetic average trade (the HPR) 
and the variance in the HPRs, and hence the reason that the 70% 1:1 
system did better than the 10% 28:1 system! 

Our goal should be to maximize the coefficient of this function, to 
maximize: 
(1.16b) EGM = (AHPR^2-V)^(1/2) 

Expressed literally, our goal is "To maximize the square root of 
the quantity HPR squared minus the population variance in HPRs." 

The exponent of the estimated TWR, N, will take care of itself. That 
is to say that increasing N is not a problem, as we can increase the num-
ber of markets we are following, can trade more short-term types of 
systems, and so on. 

However, these statistical measures of dispersion, variance, and 
standard deviation (V and SD respectively), are difficult for most non-
statisticians to envision. What many people therefore use in lieu of these 
measures is known as the mean absolute deviation (which we'll call M). 

                                                                 
6 Many people mistakenly use the arithmetic average HPR in the equation for 
HPH^N. As is demonstrated here, this will not give the true TWR after N plays. 
What you must use is the geometric, rather than the arithmetic, average HPR^N. 
This will give you the true TWR. If the standard deviation in HPRs is 0, then the 
arithmetic average HPR and the geometric average HPR are equivalent, and it 
matters not which you use. 
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Essentially, to find M you simply take the average absolute value of the 
difference of each data point to an average of the data points. 
(1.20) M = ∑ABS(Xi-X[])/N 

In a bell-shaped distribution (as is almost always the case with the 
distribution of P&L's from a trading system) the mean absolute devia-
tion equals about .8 of the standard deviation (in a Normal Distribution, 
it is .7979). Therefore, we can say: 
(1.21) M = .8*SD 

and 
(1.22) SD = 1.25*M 

We will denote the arithmetic average HPR with the variable A, and 
the geometric average HPR with the variable G. Using Equation (1.16b), 
we can express the estimated geometric mean as: 
(1.16b) G = (A^2-V)^(1/2) 

From this equation, we can obtain: 
(1.23) G^2 = (A^2-V) 

Now substituting the standard deviation squared for the variance [as 
in (1.16a)]: 
(1.24) G^2 = A^2-SD^2 

From this equation we can isolate each variable, as well as isolating 
zero to obtain the fundamental relationships between the arithmetic 
mean, geometric mean, and dispersion, expressed as SD ^ 2 here: 
(1.25) A^2-C^2-SD^2 = 0 
(1.26) G^2 = A^2-SD^2 
(1.27) SD^2 = A^2-G^2 
(1.28) A^2 = G^2+SD^2 

In these equations, the value SD^2 can also be written as V or as 
(1.25*M)^2. 

This brings us to the point now where we can envision exactly what 
the relationships are. Notice that the last of these equations is the famil-
iar Pythagorean Theorem: The hypotenuse of a right angle triangle 
squared equals the sum of the squares of its sides! But here the hypote-
nuse is A, and we want to maximize one of the legs, G. 

In maximizing G, any increase in D (the dispersion leg, equal to SD 
or V ^ (1/2) or 1.25*M) will require an increase in A to offset. When D 
equals zero, then A equals G, thus conforming to the misconstrued 
growth function TWR = (1+R)^N. Actually when D equals zero, then A 
equals G per Equation (1.26). 

So, in terms of their relative effect on G, we can state that an in-
crease in A ^ 2 is equal to a decrease of the same amount in (1.25*M)^2. 
(1.29) ∆A^2 = -A((1.25*M)^2) 

To see this, consider when A goes from 1.1 to 1.2: 
A  SD  M  G  A^2 SD^2 = (1.25*M)^2 
1.1 .1 .08 1.095445 1.21 .01 
1.2 .4899 .39192 1.095445 1.44 .24 
    .23 .23 

When A = 1.1, we are given an SD of .1. When A = 1.2, to get an 
equivalent G, SD must equal .4899 per Equation (1.27). Since M = 
.8*SD, then M = .3919. If we square the values and take the difference, 
they are both equal to .23, as predicted by Equation (1.29). 

Consider the following: 
A SD M G A^2 SD^2 = (1.25*M)^2 
1.1 .25 .2 1.071214 1.21 .0625 
1.2 .5408 .4327 1.071214 1.44 .2925 
    .23 .23 

Notice that in the previous example, where we started with lower 
dispersion values (SD or M), how much proportionally greater an in-
crease was required to yield the same G. Thus we can state that the 
more you reduce your dispersion, the better, with each reduction pro-
viding greater and greater benefit. It is an exponential function, with a 
limit at the dispersion equal to zero, where G is then equal to A. 

A trader who is trading on a fixed fractional basis wants to maxi-
mize G, not necessarily A. In maximizing G, the trader should realize 
that the standard deviation, SD, affects G in the same proportion as does 
A, per the Pythagorean Theorem! Thus, when the trader reduces the 
standard deviation (SD) of his or her trades, it is equivalent to an equal 
increase in the arithmetic average HPR (A), and vice versa! 

THE FUNDAMENTAL EQUATION OF TRADING 
We can glean a lot more here than just how trimming the size of our 

losses improves our bottom line. We return now to equation (1.19a): 
(1.19a) Estimated TWR = ((AHPR^2-SD^2)^(1/2))^N 

We again replace AHPR with A, representing the arithmetic average 
HPR. Also, since (X^Y)^Z = X^(Y*Z), we can further simplify the ex-
ponents in the equation, thus obtaining: 
(1.19c) Estimated TWR = (A^2-SD^2)^(N/2) 

This last equation, the simplification for the estimated TWR, we call 
the fundamental equation for trading, since it describes how the differ-
ent factors, A, SD, and N affect our bottom line in trading. 

A few things are readily apparent. The first of these is that if A is 
less than or equal to 1, then regardless of the other two variables, SD 
and N, our result can be no greater than 1. If A is less than 1, then as N 
approaches infinity, A approaches zero. This means that if A is less than 
or equal to 1 (mathematical expectation less than or equal to zero, since 
mathematical expectation = A-1), we do not stand a chance at making 
profits. In fact, if A is less than 1, it is simply a matter of time (i.e., as N 
increases) until we go broke. 

Provided that A is greater than 1, we can see that increasing N in-
creases our total profits. For each increase of 1 trade, the coefficient is 
further multiplied by its square root. For instance, suppose your system 
showed an arithmetic mean of 1.1, and a standard deviation of .25. 
Thus: 
Estimated TWR = (1.1^2-.25^2)^(N/2) = (1.21-.0625)^(N/2) = 
1.1475^(N/2) 

Each time we can increase N by 1, we increase our TWR by a factor 
equivalent to the square root of the coefficient. In the case of our exam-
ple, where we have a coefficient of 1.1475, then 1.1475^(1/2) = 
1.071214264. Thus every trade increase, every 1-point increase in N, is 
the equivalent to multiplying our final stake by 1.071214264. Notice 
that this figure is the geometric mean. Each time a trade occurs, each 
time N is increased by 1, the coefficient is multiplied by the geometric 
mean. Herein is the real benefit of diversification expressed mathemati-
cally in the fundamental equation of trading. Diversification lets you get 
more N off in a given period of time. 

The other important point to note about the fundamental trading 
equation is that it shows that if you reduce your standard deviation more 
than you reduce your arithmetic average HPR, you are better off. It 
stands to reason, therefore, that cutting your losses short, if possible, 
benefits you. But the equation demonstrates that at some point you no 
longer benefit by cutting your losses short. That point is the point where 
you would be getting stopped out of too many trades with a small loss 
that later would have turned profitable, thus reducing your A to a greater 
extent than your SD. 

Along these same lines, reducing big winning trades can help your 
program if it reduces your SD more than it reduces your A. In many 
cases, this can be accomplished by incorporating options into your trad-
ing program. Having an option position that goes against your position 
in the underlying (either by buying long an option or writing an option) 
can possibly help. For instance, if you are long a given stock (or com-
modity), buying a put option (or writing a call option) may reduce your 
SD on this net position more than it reduces your A. If you are profitable 
on the underlying, you will be unprofitable on the option, but profitable 
overall, only to a lesser extent than had you not had the option position. 
Hence, you have reduced both your SD and your A. If you are unprofit-
able on the underlying, you will have increased your A and decreased 
your SD. All told, you will tend to have reduced your SD to a greater 
extent than you have reduced your A. Of course, transaction costs are a 
large consideration in such a strategy, and they must always be taken 
into account. Your program may be too short-term oriented to take ad-
vantage of such a strategy, but it does point out the fact that different 
strategies, along with different trading rules, should be looked at relative 
to the fundamental trading equation. In doing so, we gain an insight into 
how these factors will affect the bottom line, and what specifically we 
can work on to improve our method. 

Suppose, for instance, that our trading program was long-term 
enough that the aforementioned strategy of buying a put in conjunction 
with a long position in the underlying was feasible and resulted in a 
greater estimated TWR. Such a position, a long position in the underly-
ing and a long put, is the equivalent to simply being outright long the 
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call. Hence, we are better off simply to be long the call, as it will result 
in considerably lower transaction costs'7 than being both long the under-
lying and long the put option. 

To demonstrate this, we'll use the extreme example of the stock in-
dexes in 1987. Let's assume that we can actually buy the underlying 
OEX index. The system we will use is a simple 20-day channel break-
out. Each day we calculate the highest high and lowest low of the last 20 
days. Then, throughout the day if the market comes up and touches the 
high point, we enter long on a stop. If the system comes down and 
touches the low point, we go short on a stop. If the daily opens are 
through the entry points, we enter on the open. The system is always in 
the market: 
Date Position Entry P&L Cumulative Volatility 
870106 L 24107 0 0 .1516987 
870414 S 27654 35.47 35.47 .2082573 
870507 L 29228 -15.74 19.73 .2182117 
870904 S 31347 21.19 40.92 .1793583 
871001 L 32067 -7.2 33.72 .1 848783 
871012 S 30281 -17.86 15.86 .2076074 
871221 L 24294 59.87 75.73 .3492674 

If we were to determine the optimal f on this stream of trades, we 
would find its corresponding geometric mean, the growth factor on our 
stake per play, to be 1.12445. 

Now we will take the exact same trades, only, using the Black-
Scholes stock option pricing model from Chapter 5, we will convert the 
entry prices to theoretical option prices. The inputs into the pricing 
model are the historical volatility determined on a 20-day basis (the 
calculation for historical volatility is also given in Chapter 5), a risk-free 
rate of 6%, and a 260.8875-day year (this is the average number of 
weekdays in a year). Further, we will assume that we are buying options 
with exactly .5 of a year left till expiration (6 months) and that they are 
at-the-money. In other words, that there is a strike price corresponding 
to the exact entry price. Buying long a call when the system goes long 
the underlying, and buying long a put when the system goes short the 
underlying, using the parameters of the option pricing model mentioned, 
would have resulted in a trade stream as follows: 
Date Position Entry P&L Cumulative Underlying Action 
870106 L  9.623 0 0 24107 LONG CALL 
870414 F 35.47 25.846 25.846 27654  
870414 L 15.428 0 25.846 27654 LONG PUT 
870507 F 8.792 -6.637 19.21 29228  
870507 L 17.116 0 19.21 29228 LONG CALL 
870904 F 21.242 4.126 23.336 31347  
870904 L 14.957 0 23.336 31347 LONG PUT 
871001 F 10.844 -4.113 19.223 32067  
871001 L 15.797 0 19.223 32067 LONG CALL 
871012 F 9.374 -6.423 12.8 30281  
871012 L 16.839 0 12.8 30281 LONG PUT 
871221 F 61.013 44.173 56.974 24294  
871221 L 23 0 56.974 24294 LONG CALL 

If we were to determine the optimal f on this stream of trades, we 
would find its corresponding geometric mean, the growth factor on our 
stake per play, to be 1.2166, which compares to the geometric mean at 
the optimal f for the underlying of 1.12445. This is an enormous differ-
ence. Since there are a total of 6 trades, we can raise each geometric 
mean to the power of 6 to determine the TWR on our stake at the end of 
the 6 trades. This returns a TWR on the underlying of 2.02 versus a 
TWR on the options of 3.24. Subtracting 1 from each TWR translates 
these results to percentage gains on our starting stake, or a 102% gain 
trading the underlying and a 224% gain making the same trades in the 
options. The options are clearly superior in this case, as the fundamental 
equation of trading testifies. 

Trading long the options outright as in this example may not always 
be superior to being long the underlying instrument. This example is an 
                                                                 
7 There is another benefit here that is not readily apparent hut has enormous 
merit. That is that we know, in advance, what our worst-case loss is in advance. 
Considering how sensitive the optimal f equation is to what the biggest loss in the 
future is, such a strategy can have us be much closer to the peak of the f curve in 
the future by allowing US to predetermine what our largest loss can he with cer-
tainty. Second, the problem of a loss of 3 standard deviations or more having a 
much higher probability of occurrence than the Normal Distribution implies is 
eliminated. It is the gargantuan losses in excess of 3 standard deviations that kill 
most traders. An options strategy such as this can totally eliminate such terminal 
losses. 

extreme case, yet it does illuminate the fact that trading strategies (as 
well as what option series to buy) should be looked at in light of the 
fundamental equation for trading in order to be judged properly. 

As you can see, the fundamental trading equation can be utilized to 
dictate many changes in our trading. These changes may be in the way 
of tightening (or loosening) our stops, setting targets, and so on. These 
changes are the results of inefficiencies in the way we are carrying out 
our trading as well as inefficiencies in our trading program or methodol-
ogy. 

I hope you will now begin to see that the computer has been terri-
bly misused by most traders. Optimizing and searching for the systems 
and parameter values that made the most money over past data is, by 
and large a futile process. You only need something that will be mar-
ginally profitable in the future. By correct money management you 
can get an awful lot out of a system that is only marginally profitable. 
In general, then, the degree of profitability is determined by the money 
management you apply to the system more than by the system itself 

Therefore, you should build your systems (or trading techniques, 
for those opposed to mechanical systems) around how certain you can 
be that they will be profitable (even if only marginally so) in the fu-
ture. This is accomplished primarily by not restricting a system or 
technique's degrees of freedom. The second thing you should do re-
garding building your system or technique is to bear the fundamental 
equation of trading in mind It will guide you in the right direction 
regarding inefficiencies in your system or technique, and when it is 
used in conjunction with the principle of not restricting the degrees of 
freedom, you will have obtained a technique or system on which you 
can now employ the money-management techniques. Using these 
money-management techniques, whether empirical, as detailed in this 
chapter, or parametric (which we will delve into starting in Chapter 3), 
will determine the degree of profitability of your technique or system. 
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Chapter 2 - Characteristics of Fixed Frac-
tional Trading and Salutary Techniques 

We have seen that the optimal growth of an account is achieved 
through optimal f. This is true regardless of the underlying vehicle. 
Whether we are trading futures, stocks, or options, or managing a 
group of traders, we achieve optimal growth at the optimal f, and we 
reach a specified goal in the shortest time. 

We have also seen how to combine various market systems at their 
optimal f levels into an optimal portfolio from an empirical standpoint. 
That is, we have seen how to combine optimal f and portfolio theory, 
not from a mathematical model standpoint, but from the standpoint of 
using the past data directly to determine the optimal quantities to trade 
in for the components of the optimal portfolio. 

Certain important characteristics about fixed fractional trading 
still need to be mentioned. We now cover these characteristics. 

OPTIMAL F FOR SMALL TRADERS JUST STARTING OUT 
How does a very small account, an account that is going to start out 

trading 1 contract, use the optimal f approach? One suggestion is that 
such an account start out by trading 1 contract not for every optimal f 
amount in dollars (biggest loss/-f), but rather that the drawdown and 
margin must be considered in the initial phase. The amount of funds 
allocated towards the first contract should be the greater of the optimal f 
amount in dollars or the margin plus the maximum historic drawdown 
(on a 1-unit basis): 
(2.01) A = MAX {(Biggest Loss/-f), (Margin+ABS(Drawdown))} 

where 
A = The dollar amount to allocate to the first contract. 
f = The optimal f (0 to 1). 
Margin = The initial speculative margin for the given contract. 
Drawdown = The historic maximum drawdown. 
MAX{} = The maximum value of the bracketed values. 
ABS() = The absolute value function. 
With this procedure an account can experience the maximum draw-

down again and still have enough funds to cover the initial margin on 
another trade. Although we cannot expect the worst-case drawdown in 
the future not to exceed the worst-case drawdown historically, it is 
rather unlikely that we will start trading right at the beginning of a new 
historic drawdown. 

A trader utilizing this idea will then subtract the amount in Equation 
(2.01) from his or her equity each day. With the remainder, he or she 
will then divide by (Biggest Loss/-f). The answer obtained will be 
rounded down to the integer, and 1 will be added. The result is how 
many contracts to trade. 

An example may help clarify. Suppose we have a system where the 
optimal f is .4, the biggest historical loss is -$3,000, the maximum 
drawdown was -$6,000, and the margin is $2,500. Employing Equation 
(2.01) then: 
A = MAX{( -$3,000/-.4), ($2,500+ABS( -$6,000))}  
= MAX(($7,500), ($2,500+$6,000))  
= MAX($7,500, $8,500)  
= $8,500 

We would thus allocate $8,500 for the first contract. Now suppose 
we are dealing with $22,500 in account equity. We therefore subtract 
this first contract allocation from the equity: 
$22,500-$8,500 = $14,000 

We then divide this amount by the optimal fin dollars: 
$14,000/$7,500 = 1.867 

Then we take this result down to the integer: 
INT( 1.867) = 1 

and add 1 to the result (the 1 contract represented by the $8,500 we 
have subtracted from our equity): 
1+1 = 2 

We therefore would trade 2 contracts. If we were just trading at the 
optimal f level of 1 contract for every $7,500 in account equity, we 

would have traded 3 contracts ($22,500/$7,500). As you can see, this 
technique can be utilized no matter of how large an account's equity is 
(yet the larger the equity the closer the two answers will be). Further, the 
larger the equity, the less likely it is that we will eventually experience a 
drawdown that will have us eventually trading only 1 contract. For 
smaller accounts, or for accounts just starting out, this is a good idea to 
employ. 

THRESHOLD TO GEOMETRIC 
Here is another good idea for accounts just starting out, one that 

may not be possible if you are employing the technique just mentioned. 
This technique makes use of another by-product calculation of optimal f 
called the threshold to geometric. The by-products of the optimal f cal-
culation include calculations, such as the TWR, the geometric mean, and 
so on, that were derived in obtaining the optimal f, and that tell us some-
thing about the system. The threshold to the geometric is another of 
these by-product calculations. Essentially, the threshold to geometric 
tells us at what point we should switch over to fixed fractional trading, 
assuming we are starting out constant-contract trading. 

Refer back to the example of a coin toss where we win $2 if the toss 
comes up heads and we lose $1 if the toss comes up tails. We know that 
our optimal f is .25, or to make 1 bet for every $4 we have in account 
equity. If we are starting out trading on a constant-contract basis, we 
know we will average $.50 per unit per play. However, if we start trad-
ing on a fixed fractional basis, we can expect to make the geometric 
average trade of $.2428 per unit per play. 

Assume we start out with an initial stake of $4, and therefore we are 
making 1 bet per play. Eventually, when we get to $8, the optimal f 
would have us step up to making 2 bets per play. However, 2 bets times 
the geometric average trade of $.2428 is $.4856. Wouldn't we be better 
off sticking with 1 bet at the equity level of $8, whereby our expectation 
per play would still be $.50? The answer is, "Yes." The reason that the 
optimal f is figured on the basis of contracts that are infinitely divisible, 
which may not be the case in real life. 

We can find that point where we should move up to trading two 
contracts by the formula for the threshold to the geometric, T: 
(2.02) T = AAT/GAT*Biggest Loss/-f 

where 
T = The threshold to the geometric. 
AAT = The arithmetic average trade. 
GAT s The geometric average trade, 
f = The optimal f (0 to 1). 
In our example of the 2-to-l coin toss: 

T = .50/.2428*-1/-.25 = 8.24 
Therefore, we are better off switching up to trading 2 contracts 

when our equity gets to $8.24 rather than $8.00. Figure 2-1 shows the 
threshold to the geometric for a game with a 50% chance of winning $2 
and a 50% chance of losing $1. 
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Figure 2-1 Threshold to the geometric for 2:1 coin toss.  

Notice that the trough of the threshold to the geometric curve occurs 
at the optimal f. This means that since the threshold to the geometric is 
the optimal level of equity to go to trading 2 units, you go to 2 units at 
the lowest level of equity, optimally, when incorporating the threshold 
to the geometric at the optimal f. 
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Now the question is, "Can we use a similar approach to know when 
to go from 2 cars to 3 cars?" Also, 'Why can't the unit size be 100 cars 
starting out, assuming you are starting out with a large account, rather 
than simply a small account starting out with 1 car?" To answer the 
second question first, it is valid to use this technique when starting out 
with a unit size greater than 1. However, it is valid only if you do not 
trim back units on the downside before switching into the geometric 
mode. The reason is that before you switch into the geometric mode you 
are assumed to be trading in a constant-unit size. 

Assume you start out with a stake of 400 units in our 2-to-l coin-toss 
game. Your optimal fin dollars is to trade 1 contract (make 1 bet) for 
every $4 in equity. Therefore, you will start out trading 100 contracts 
(making 100 bets) on the first trade. Your threshold to the geometric is 
at $8.24, and therefore you would start trading 101 contracts at an equity 
level of $404.24. You can convert your threshold to the geometric, 
which is computed on the basis of advancing from 1 contract to 2, as: 
(2.03) Converted T = EQ+T-(Biggest Loss/-f) 

where 
EQ = The starting account equity level. 
T = The threshold to the geometric for going from 1 car to 2. 
f = The optimal f (0 to 1). 
Therefore, since your starting account equity is $400, your T is 

$8.24, your biggest loss -$1, and your f is .25: 
Converted T = 400+8.24-(-1/-.25)  
= 400+8.24-4  
= 404.24 

Thus, you would progress to trading 101 contracts (making 101 
bets) if and when your account equity reached $404.24. We will assume 
you are trading in a constant-contract mode until your account equity 
reaches $404.24, at which point you will begin the geometric mode. 
Therefore, until Your account equity reaches $404.24, you will trade 
100 contracts on the next trade regardless of the remaining equity in 
your account. If, after you cross the geometric threshold (that is, after 
your account equity hits S404.24), you suffer a loss and your equity 
drops below $404.24, you will go back to trading on a constant 100-
contract basis if and until you cross the geometric threshold again. 

This inability to trim back contracts on the downside when you are 
below the geometric threshold is the drawback to using this procedure 
when you are at an equity level of trading more than 2 contacts. If you 
are only trading 1 contract, the geometric threshold is a very valid tech-
nique for determining at what equity level to start trading 2 contracts 
(since you cannot trim back any further than 1 contract should you ex-
perience an equity decline). However, it is not a valid technique for 
advancing from 2 contracts to 3, because the technique is predicated 
upon the fact that you are currently trading on a constant-contract basis. 
That is, if you are trading 2 contracts, unless you are willing not to trim 
back to 1 contract if you suffer an equity decline, the technique is not 
valid, and likewise if you start out trading 100 contracts. You could do 
just that (not trim back the number of contracts you are presently trading 
if you experience an equity decline), in which case the threshold to the 
geometric, or its converted version in Equation (2.03), would be the 
valid equity point to add the next contract. The problem with doing this 
(not trimming back on the downside) is that you will make less (your 
TWR will be less) in an asymptotic sense. You will not make as much 
as if you simply traded the full optimal f. Further, your drawdowns will 
be greater and your risk of ruin higher. Therefore, the threshold to the 
geometric is only beneficial if you are starting out in the lowest denomi-
nation of bet size (1 contract) and advancing to 2, and it is only a benefit 
if the arithmetic average trade is more than twice the size of the geomet-
ric average trade. Furthermore, it is beneficial to use only when you 
cannot trade fractional units. 

ONE COMBINED BANKROLL VERSUS SEPARATE 
BANKROLLS 

Some very important points regarding fixed fractional trading must 
be covered before we discuss the parametric techniques. First, when 
trading more than one market system simultaneously, you will generally 
do better in an asymptotic sense using only one combined bankroll from 
which to figure your contract sizes, rather than separate bankrolls for 
each. 

It is for this reason that we "recapitalize" the subaccounts on a daily 
basis as the equity in an account fluctuates. What follows is a run of two 
similar systems, System A and System B. Both have a 50% chance of 
winning, and both have a payoff ratio of 2:1. Therefore, the optimal f 
dictates that we bet $1 for every S4 units in equity. The first run we see 
shows these two systems with positive correlation to each other. We 
start out with $100, splitting it into 2 subaccount units of $50 each. After 
a trade is registered, it only affects the cumulative column for that sys-
tem, as each system has its own separate bankroll. The size of each sys-
tem's separate bankroll is used to determine bet size on the subsequent 
play: 
System A System B 
Trade P&L Cumulative Trade P&L Cumulative
  50.00   50.00 
2 25.00 75.00 2 25.00 75.00 
-1 -18.75 56.25 -1 -18.75 56.25 
2 28.13 84 .38 2 28.13 84.38 
-1 -21.09 63.28 -1 -21.09 63.28 
2 31.64 94 .92 2 31.64 94 .92 
-1 -23.73 71.19 -1 -23.73 71.19 
  -50.00   -50.0 
Net Profit 21.19140 21.19140 
Total net profit of the two banks = $42.38 

Now we will see the same thing, only this time we will operate from 
a combined bank starting at 100 units. Rather than betting $1 for every 
$4 in the combined stake for each system, we will bet $1 for every $8 in 
the combined bank. Each trade for either system affects the combined 
bank, and it is the combined bank that is used to determine bet size on 
the subsequent play: 
System A System B  
Trade P&L Trade P&L Combined Bank 
    100.00 
2 25.00 2 25.00 150.00 
-1 -18.75 -1 -18.75 112.50 
2 28.13 2 28.13 168.75 
-1 -21.09 -1 -21.09 126.56 
2 31.64 2 31.64 189.84 
-1 -23.73 -1 -23.73 142.38 
 -100.00 
Total net profit of the combined bank =  $42.38 

Notice that using either a combined bank or a separate bank in the 
preceding example shows a profit on the $100 of $42.38. Yet what was 
shown is the case where there is positive correlation between the two 
systems. Now we will look at negative correlation between the same 
two systems, first with both systems operating from their own separate 
bankrolls: 
System A System B 
Trade P&L Cumulative Trade P&L Cumulative 
  50.00   50.00 
2 25.00 75.00 -1 -12.50 37.50 
-1 -18.75 56.25 2 18.75 56.25 
2 28.13 84.38 -1 -14.06 42.19 
-1 -21.09 63.28 2 21.09 63.28 
2 31.64 94.92 -1 -15.82 47.46 
-1 -23.73 71.19 2 23.73 71.19 
  -50.00   -50.00 
Net Profit 21.19140   21.19140 
Total net profit of the two banks =  $42.38 

As you can see, when operating from separate bankrolls, both sys-
tems net out making the same amount regardless of correlation. How-
ever, with the combined bank: 
System A System B  
Trade P&L Trade P&L Combined Bank 
    100.00 
2 25.00 -1 -12.50 112.50 
-1 -14.06 2 28.12 126.56 
2 31.64 -1 -15.82 142.38 
-1 -17.80 2 35.59 160.18 
2 40.05 -1 -20.02 180.20 
-1 -22.53 2 45.00 202.73 
 -100.00 
Total net profit of the combined bank =  $102.73 

With the combined bank, the results are dramatically improved. 
When using fixed fractional trading you are best off operating from a 
single combined bank. 
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THREAT EACH PLAY AS IF INFINITELY REPEATED 
The next axiom of fixed fractional trading regards maximizing the 

current event as though it were to be performed an infinite number of 
times in the future. We have determined that for an independent trials 
process, you should always bet that f which is optimal (and constant) 
and likewise when there is dependency involved, only with dependency 
f is not constant. 

Suppose we have a system where there is dependency in like beget-
ting like, and suppose that this is one of those rare gems where the con-
fidence limit is at an acceptable level for us, that we feel we can safely 
assume that there really is dependency here. For the sake of simplicity 
we will use a payoff ratio of 2:1. Our system has shown that, histori-
cally, if the last play was a win, then the next play has a 55% chance of 
being a tin. If the last play was a loss, our system has a 45% chance of 
the next play being a loss. Thus, if the last play was a win, then from the 
Kelly formula, Equation (1.10), for finding the optimal f (since the pay-
off ratio is Bernoulli distributed): 
(1.10) f = ((2 +1)*.55-1)/2  
= (3*.55-1)/2  
= .65/2  
= .325 

After a losing play, our optimal f is: 
f = ((2+ l)*.45-l)/2  
= (3*.45- l)/2  
= .35/2  
= .175 

Now dividing our biggest losses (-1) by these negative optimal fs 
dictates that we make 1 bet for every 3.076923077 units in our stake 
after a win, and make 1 bet for every 5.714285714 units in our stake 
after a loss. In so doing we will maximize the growth over the long run. 
Notice that we treat each individual play as though it were to be per-
formed an infinite number of times. 

Notice in this example that betting after both the wins and the losses 
still has a positive mathematical expectation individually. What if, after 
a loss, the probability of a win was .3? In such a case, the mathemati-
cal expectation is negative, hence there is no optimal f and as a result 
you shouldn't take this play: 
(1.03) ME = (.3*2)+ (.7*-1)  
= .6-.7 = -.1 

In such circumstances, you would bet the optimal amount only after 
a win, and you would not bet after a loss. If there is dependency present, 
you must segregate the trades of the market system based upon the de-
pendency and treat the segregated trades as separate market systems. 

The same principle, namely that asymptotic growth is maximized if 
each play is considered to be performed an infinite number of times 
into the future, also applies to simultaneous wagering (or trading a port-
folio). Consider two betting systems, A and B. Both have a 2:1 payoff 
ratio, and both win 50% of the time. We will assume that the correlation 
coefficient between the two systems is 0, but that is not relevant to the 
point being illuminated here. The optimal fs for both systems (if they 
were being traded alone, rather than simultaneously) are .25, or to make 
1 bet for every 4 units in equity. The optimal fs for trading both systems 
simultaneously are .23, or 1 bet for every 4.347826087 units in account 
equity.1 System B only trades two-thirds of the time, so some trades will 
be done when the two systems are not trading simultaneously. This first 
sequence is demonstrated with a starting combined bank of 1,000 units, 
and each bet for each system is performed with an optimal f of 1 bet per 
every 4.347826087 units: 
A B Combined Bank 
    1,000.00 
-1 -230.00   770.00 
2 354.20 -1 -177.10 947.10 
-1 -217.83 2 435.67 1,164.93 
                                                                 
1 The method We are using here to arrive at these optimal bet sizes is described in 
Chapters 6 and 7. We are, in effect, using 3 market systems, Systems A and B as 
described here, both with an arithmetic HPR of 1.125 and a stand and deviation 
in HPRs of .375, and null cash, with an HPR of 1.0 and a standard deviation of 0. 
The geometric average is thus maximized at approximately E = .23, where the 
weightings for A and B both are .92. Thus, the optimal fs for both A and B are 
transformed to 4.347826. Using such factors will maximize growth in this game. 

A B Combined Bank 
2 535.87   1,700.80 
-1 -391.18 -1 -391.18 918.43 
2 422.48 2 422.48 1,763.39 

Next we see the same exact thing, the only difference being that 
when A is betting alone (i.e., when B does not have a bet at the same 
time as A), we make 1 bet for every 4 units in the combined bank for 
System A, since that is the optimal f on the single, individual play. On 
the plays where the bets are simultaneous, we are still betting 1 unit for 
every 4.347826087 units in account equity for both A and B. Notice that 
in so doing we are taking each bet, whether it is individual or simultane-
ous, and applying that optimal f which would maximize the play as 
though it were to be performed an infinite number of times in the future. 
A B Combined Bank 
    1,000.00 
- 1 -250.00   750.00 
2 345.00 -1 -172.50 922.50 
- 1 -212.17 2 424.35 1,134.67 
2 567.34   1,702.01 
- 1 -391.46 -1 -391.46 919.09 
2 422.78 2 422.78 1,764.65 

As can be seen, there is a slight gain to be obtained by doing this, 
and the more trades that elapse, the greater the gain. The same principle 
applies to trading a portfolio where not all components of the portfolio 
are in the market all the time. You should trade at the optimal levels for 
the combination of components (or single component) that results in the 
optimal growth as though that combination of components (or single 
component) were to be traded an infinite number of times in the future. 

EFFICIENCY LOSS IN SIMULTANEOUS WAGERING OR 
PORTFOLIO TRADING 

Let's again return to our 2:1 coin-toss game. Let's again assume that 
we are going to play two of these games, which we'll call System A and 
System B, simultaneously and that there is zero correlation between the 
outcomes of the two games. We can determine our optimal fs for such a 
case as betting 1 unit for every 4.347826 in account equity when the 
games are played simultaneously. When starting with a bank of 100 
units, notice that we finish with a bank of 156.86 units: 
 System A System B  
 Trade P&L Trade P&L Bank 
Optimal f is 1 unit for every 4.347826 in equity: 100.00
 -1 -23.00 -1 -23.00 54.00 
 2 24.84 -1  -12.42  66.42 
 -1 -15.28 2  30.55  81.70 
 2 37.58 2  37.58  156.66
 System A  System B   
 Trade P&L Trade P&L Bank 
Optimal f is 1 unit for every 8.00 in equity: 100.00
 -1 -12.50 -1 -12.50 75.00 
 2 18.75 2 18.75 112.50
 -1 -14.06 -1 -14.06 84.38 
 2 21.09 2 21.09 126.56

Now let's consider System C. This would be the same as Systems A 
and B, only we're going to play this game alone, without another game 
going simultaneously. We're also going to play it for 8 plays-as opposed 
to the previous endeavor, where we played 2 games for 4 simultaneous 
plays. Now our optimal f is to bet 1 unit for every 4 units in equity. 
What we have is the same 8 outcomes as before, but a different, better 
end result: 
 System C 
 Trade P&L Bank 
Optimal f is 1 unit f or every 4.00 in equity: 100.00 
 -1 -25.00 75.00 
 2 37.50 112.50 
 -1 -28.13 84.38 
 2 42.19 126.56 
 2 63.28 189.84 
 2 94.92 284.77 
 -1 -71.19 213.57 
 -1 -53.39 160.18 

The end result here is better not because the optimal fs differ 
slightly (both are at their respective optimal levels), but because there is 
a small efficiency loss involved with simultaneous wagering. This inef-
ficiency is the result of not being able to recapitalize your account 
after every single wager as you could betting only 1 market system. In 
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the simultaneous 2-bet case, you can only recapitalize 3 times, whereas 
in the single B-bet case you recapitalize 7 times. Hence, the efficiency 
loss in simultaneous wagering (or in trading a portfolio of market sys-
tems). 

We just witnessed the case where the simultaneous bets were not 
correlated. Let's look at what happens when we deal with positive 
(+1.00) correlation: 

Notice that after 4 simultaneous plays where the correlation between 
the market systems employed is+1.00, the result is a gain of 126.56 on a 
starting stake of 100 units. This equates to a TWR of 1.2656, or a geo-
metric mean, a growth factor per play (even though these are combined 
plays) of 1.2656^(1/4) = 1.06066. 

Now refer back to the single-bet case. Notice here that after 4 plays, 
the outcome is 126.56, again on a starting stake of 100 units. Thus, the 
geometric mean of 1.06066. This demonstrates that the rate of growth is 
the same when trading at the optimal fractions for perfectly correlated 
markets. As soon as the correlation coefficient comes down below+1.00, 
the rate of growth increases. Thus, we can state that when combining 
market systems, your rate of growth will never be any less than with 
the single-bet case, no matter of how high the correlations are, pro-
vided that the market system being added has a positive arithmetic 
mathematical expectation. 

Recall the first example in this section, where there were 2 market 
systems that had a zero correlation coefficient between them. This mar-
ket system made 156.86 on 100 units after 4 plays, for a geometric mean 
of (156.86/100)^(1/4) = 1.119. Let's now look at a case where the corre-
lation coefficients are -1.00. Since there is never a losing play under the 
following scenario, the optimal amount to bet is an infinitely high 
amount (in other words, bet 1 unit for every infinitely small amount of 
account equity). But, rather than getting that greedy, we'll just make 1 
bet for every 4 units in our stake so that we can make the illustration 
here: 
 System A System B  
 Trade P&L Trade P&L Bank 
Optimal f is 1 unit for every 0.00 in equity (shown is 1 for every 4): 100.00
 -1 -12.50 2 25.00 112.50
 2  28.13 -1 -14.06 126.56
 -1 -15.82 2 31.64 142.38
 2 35.60 -1 -17.80 160.18

There are two main points to glean from this section. The first is 
that there is a small efficiency loss with simultaneous betting or portfo-
lio trading, a loss caused by the inability to recapitalize after every indi-
vidual play. The second point is that combining market systems, pro-
vided they have a positive mathematical expectation, and even if they 
have perfect positive correlation, never decreases your total growth per 
time period. However, as you continue to add more and more market 
systems, the efficiency loss becomes considerably greater. If you have, 
say, 10 market systems and they all suffer a loss simultaneously, that 
loss could be terminal to the account, since you have not been able to 
trim back size for each loss as you would have had the trades occurred 
sequentially. 

Therefore, we can say that there is a gain from adding each new 
market system to the portfolio provided that the market system has a 
correlation coefficient less than 1 and a positive mathematical expecta-
tion, or a negative expectation but a low enough correlation to the other 
components in the portfolio to more than compensate for the negative 
expectation. There is a marginally decreasing benefit to the geometric 
mean for each market system added. That is, each new market system 
benefits the geometric mean to a lesser and lesser degree. Further, as 
you add each new market system, there is a greater and greater effi-
ciency loss caused as a result of simultaneous rather than sequential 
outcomes. At some point, to add another market system will do more 
harm then good. 

TIME REQUIRED TO REACH A SPECIFIED GOAL AND 
THE TROUBLE WITH FRACTIONAL F 

Suppose we are given the arithmetic average HPR and the geomet-
ric average HPR for a given system. We can determine the standard 
deviation in HPRs from the formula for estimated geometric mean: 
(1.19a) EGM = (AHPR^2-SD^2)^(1/2) 

where 

AHPR = The arithmetic mean HPR. 
SD = The population standard deviation in HPRs. 
Therefore, we can estimate the standard deviation, SD, as: 

(2.04) SD^2 = AHPR^2-EGM^2 
Returning to our 2:1 coin-toss game, we have a mathematical expec-

tation of $.50, and an optimal f of betting $1 for every $4 in equity, 
which yields a geometric mean of 1.06066. We can use Equation (2.05) 
to determine our arithmetic average HPR: 
(2.05) AHPR = l+(ME/f$) 

where 
AHPR = The arithmetic average HPR. 
ME = The arithmetic mathematical expectation in units. 
f$ = The biggest loss/-f. f = The optimal f (0 to 1). 
Thus, we would have an arithmetic average HPR of: 

AHPR = 1+(.5/( -1/ -.25))  
= 1+(.5/4)  
= 1+.125  
= 1.125 

Now, since we have our AHPR and our ECM, we can employ equa-
tion (2.04) to determine the estimated standard deviation in the HPRs: 
(2.04) SD^2 = AHPR^2-EGM^2  
= 1.125^2-1.06066^2  
= 1.265625-1.124999636  
= .140625364 

Thus SD^2, which is the variance in HPRs, is .140625364. Taking 
the Square root of this yields a standard deviation in these HPRs of 
.140625364^(1/2) = .3750004853. You should note that this is the esti-
mated standard deviation because it uses the estimated geometric mean 
as input. It is probably not completely exact, but it is close enough for 
our purposes. 

However, suppose we want to convert these values for the standard 
deviation (or variance), arithmetic, and geometric mean HPRs to reflect 
trading at the fractional f. These conversions are now given: 
(2.06) FAHPR = (AHPR-1)*FRAC+1 
(2.07) FSD = SD*FRAC 
(2.08) FGHPR = (FAHPR^2-FSD^2)^(1/2) 

where 
FRAC = The fraction of optimal f we are solving for. 
AHPR = The arithmetic average HPR at the optimal f. 
SD = The standard deviation in HPRs at the optimal f. FAHPR = 

The arithmetic average HPR at the fractional f. 
FSD = The standard deviation in HPRs at the fractional f FGHPR = 

The geometric average HPR at the fractional f. 
For example, suppose we want to see what values we would have 

for FAHPR, FGHPR, and FSD at half the optimal f (FRAC = .5) in our 
2:1 coin-toss game. Here, we know our AHPR is 1.125 and our SD is 
.3750004853. Thus: 
(2.06) FAHPR = (AHPR-1)*FRAC+1  
= (1.125- 1)*.5+1  
= .125*.5+1  
= .0625+1  
= 1.0625 
(2.07) FSD = SD*FRAC  
= ,3750004853*.5  
= .1875002427 
(2.08) FGHPR = (FAHPR^2-FSD^2)^(1/2)  
= (1.0625^2-.1875002427^2)^(1/2)  
= (1.12890625-.03515634101)^(1/2)  
= 1.093749909^(1/2)  
= 1.04582499 

Thus, for an optimal f of .25, or making 1 bet for every $4 in equity, 
we have values of 1.125, 1.06066, and .3750004853 for the arithmetic 
average, geometric average, and standard deviation of HPRs respec-
tively. Now we have solved for a fractional (.5) f of .125 or making 1 
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bet for every $8 in our stake, yielding values of 1.0625, 1.04582499, and 
.1875002427 for the arithmetic average, geometric average, and stan-
dard deviation of HPRs respectively. 

We can now take a look at what happens when we practice a frac-
tional f strategy. We have already determined that under fractional f we 
will make geometrically less money than under optimal f. Further, we 
have determined that the drawdowns and variance in returns will be less 
with fractional f. What about time required to reach a specific goal? 

We can quantify the expected number of trades required to reach a 
specific goal. This is not the same thing as the expected time required to 
reach a specific goal, but since our measurement is in trades we will use 
the two notions of time and trades elapsed interchangeably here: 
(2.09) N = ln(Goal)/ln(Geometric Mean) 

where 
N = The expected number of trades to reach a specific goal. 
Goal = The goal in terms of a multiple on our starting stake, a TWR. 
ln() = The natural logarithm function. 
Returning to our 2:1 coin-toss example. At optimal f we have a 

geometric mean of 1.06066, and at half f this is 1.04582499. Now let's 
calculate the expected number of trades required to double our stake 
(goal = 2). At full f: 
N = ln(2)/ln( 1.06066) = .6931471/.05889134 = 11.76993 

Thus, at the full f amount in this 2:1 coin-toss game, we anticipate it 
will take us 11.76993 plays (trades) to double our stake. Now, at the half 
f amount: 
N = ln(2)/ln(1.04582499) = .6931471/.04480602 = 15.46996 

Thus, at the half f amount, we anticipate it will take us 15.46996 
trades to double our stake. In other words, trading half f in this case will 
take us 31.44% longer to reach our goal. 

Well, that doesn't sound too bad. By being more patient, allowing 
31.44% longer to reach our goal, we eliminate our drawdown by half 
and our variance in the trades by half. Half f is a seemingly attractive 
way to go. The smaller the fraction of optimal f that you use, the 
smoother the equity curve, and hence the less time you can expect to be 
in the worst-case drawdown. 

Now, let's look at it in another light. Suppose you open two ac-
counts, one to trade the full f and one to trade the half f. After 12 plays, 
your full f account will have more than doubled to 2.02728259 
(1.06066^12) times your starting stake. After 12 trades your half f ac-
count will have grown to 1.712017427 (1.04582499^12) times your 
starting stake. This half f account will double at 16 trades to a multiple 
of 2.048067384 (1.04582499^16) times your starting stake. So, by wait-
ing about one-third longer, you have achieved the same goal as with full 
optimal f, only with half the commotion. However, by trade 16 the full f 
account is now at a multiple of 2.565777865 (1.06066^16) times your 
starting stake. Full f will continue to pull out and away. By trade 100, 
your half f account should be at a multiple of 88.28796546 times your 
starting stake, but the full f will be at a multiple of 361.093016! 

So anyone who claims that the only thing you sacrifice with trading 
at a fractional versus full f is time required to reach a specific goal is 
completely correct. Yet time is what it's all about. We can put our 
money in Treasury Bills and they will reach a specific goal in a certain 
time with an absolute minimum of drawdown and variance! Time truly 
is of the essence. 

COMPARING TRADING SYSTEMS 
We have seen that two trading systems can be compared on the ba-

sis of their geometric means at their respective optimal fs. Further, we 
can compare systems based on how high their optimal fs themselves are, 
with the higher optimal f being the riskier system. This is because the 
least the drawdown may have been is at least an f percent equity re-
tracement. So, there are two basic measures for comparing systems, the 
geometric means at the optimal fs, with the higher geometric mean be-
ing the superior system, and the optimal fs themselves, with the lower 
optimal f being the superior system. Thus, rather than having a single, 
one-dimensional measure of system performance, we see that perform-
ance must be measured on a two-dimensional plane, one axis being the 
geometric mean, the other being the value for f itself. The higher the 
geometric mean at the optimal f, the better the system, Also, the lower 
the optimal f, the better the system. 

Geometric mean does not imply anything regarding drawdown. That 
is, a higher geometric mean does not mean a higher (or lower) draw-
down. The geometric mean only pertains to return. The optimal f is the 
measure of minimum expected historical drawdown as a percentage of 
equity retracement. A higher optimal f does not mean a higher (or 
lower) return. We can also use these benchmarks to compare a given 
system at a fractional f value and another given system at its full optimal 
f value. 

Therefore, when looking at systems, you should look at them in 
terms of how high their geometric means are and what their optimal fs 
are. For example, suppose we have System A, which has a 1.05 geomet-
ric mean and an optimal f of .8. Also, we have System B, which has a 
geometric mean of 1.025 and an optimal f of .4. System A at the half f 
level will have the same minimum historical worst-case equity retrace-
ment (drawdown) of 40%, just as System B's at full f, but System A's 
geometric mean at half f will still be higher than System B's at the full f 
amount. Therefore, System A is superior to System B. 

"Wait a minute," you say, "I thought the only thing that mattered 
was that we had a geometric mean greater than 1, that the system need 
be only marginally profitable, that we can make all the money we want 
through money management!" That's still true. However, the rate at 
which you will make the money is still a function of the geometric mean 
at the f level you are employing. The expected variability will be a func-
tion of how high the f you are using is. So, although it's true that you 
must have a system with a geometric mean at the optimal f that is 
greater than 1 (i.e., a positive mathematical expectation) and that you 
can still make virtually an unlimited amount with such a system after 
enough trades, the rate of growth (the number of trades required to reach 
a specific goal) is dependent upon the geometric mean at the f value 
employed. The variability en route to that goal is also a function of the f 
value employed. 

Yet these considerations, the degree of the geometric mean and the f 
employed, are secondary to the fact that you must have a positive 
mathematical expectation, although they are useful in comparing two 
systems or techniques that have positive mathematical expectations and 
an equal confidence of their working in the future. 

TOO MUCH SENSIVITY TO THE BIGGEST LOSS 
A recurring criticism with the entire approach of optimal f is that it 

is too dependent on the biggest losing trade. This seems to be rather 
disturbing to many traders. They argue that the amount of contracts you 
put on today should not be so much a function of a single bad trade in 
the past. 

Numerous different algorithms have been worked up by people to 
alleviate this apparent oversensitivity to the largest loss. Many of these 
algorithms work by adjusting the largest loss upward or downward to 
make the largest loss be a function of the current volatility in the market. 
The relationship seems to be a quadratic one. That is, the absolute value 
of the largest loss seems to get bigger at a faster rate than the volatility. 
(Volatility is usually defined by these practitioners as the average daily 
range of the last few weeks, or average absolute value of the daily net 
change of the last few weeks, or any of the other conventional measures 
of volatility.) However, this is not a deterministic relationship. That is, 
just because the volatility is X today does not mean that our largest loss 
will be X^Y. It simply means that it usually is somewhere near X^Y. 

If we could determine in advance what the largest possible loss 
would be going into today, we could then have a much better handle on 
our money management.2 Here again is a case where we must consider 
the worst-case scenario and build from there. The problem is that we do 
not know exactly what our largest loss can be going into today. An algo-

                                                                 
2 This is where using options in a trading strategy is so useful. Either buying a put 
or call out right in opposition to the underlying position to limit the loss to the 
strike price of the options, or simply buying options outright in lieu of the under-
lying, gives you a floor, an absolute maximum loss. Knowing this is extremely 
handy from a money-management, particularly an optimal f, standpoint, Further, 
if you know what your maximum possible loss is n advance (e.g., a day trade), 
then you can always determine what the f is in dollars perfectly for any trade by 
the relation dollars at risk per unit/optima] f. For example, suppose a day trader 
knew her optimal 1 was .4. Her stop today, on a I-unit basis, is going to be $900. 
She will therefore optimally trade 1 unit for every $2,250 ($900/.4) in account 
equity. 
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rithm that can predict this is really not very useful to us because of the 
one time that it fails. 

Consider for instance the possibility of an exogenous shock occur-
ring in a market overnight. Suppose the volatility were quite low prior to 
this overnight shock, and the market then went locked-limit against you 
for the next few days. Or suppose that there were no price limits, and the 
market just opened an enormous amount against you the next day. These 
types of events are as old as commodity and stock trading itself. They 
can and do happen, and they are not always telegraphed in advance by 
increased volatility. 

Generally then you are better off not to "shrink" your largest histori-
cal loss to reflect a current low-volatility marketplace. Furthermore, 
there Is the concrete possibility of experiencing a loss larger in the 
future than what was the historically largest loss. There is no mandate 
that the largest loss seen in the past is the largest loss you can experi-
ence today.3 This is true regardless of the current volatility coming into 
today. 

The problem is that, empirically, the f that has been optimal in the 
past is a function of the largest loss of the past. There's no getting 
around this. However, as you shall see when we get into the parametric 
techniques, you can budget for a greater loss in the future. In so doing, 
you will be prepared if the almost inevitable larger loss comes along. 
Rather than trying to adjust the largest loss to the current climate of a 
given market so that your empirical optimal f reflects the current cli-
mate, you will be much better off learning the parametric techniques. 

The technique that follows is a possible solution to this problem, 
and it can be applied whether we are deriving our optimal f empirically 
or, as we shall learn later, parametrically. 

EQUALIZING OPTIMAL F 
Optimal f will yield the greatest geometric growth on a stream of 

outcomes. This is a mathematical fact. Consider the hypothetical stream 
of outcomes: 

+2, -3, +10, -5 
This is a stream from which we can determine our optimal f as .17, 

or to bet 1 unit for every $29.41 in equity. Doing so on such a stream 
will yield the greatest growth on our equity. 

Consider for a moment that this stream represents the trade profits 
and losses on one share of stock. Optimally we should buy one share of 
stock for every $29.41 that we have in account equity, regardless of 
what the current stock price is. But suppose the current stock price is 
$100 per share. Further, suppose the stock was $20 per share when the 
first two trades occurred and was $50 per share when the last two trades 
occurred. 

Recall that with optimal f we are using the stream of past trade 
P&L's as a proxy for the distribution of expected trade P&L's currently. 
Therefore, we can preprocess the trade P&L data to reflect this by con-
verting the past trade P&L data to reflect a commensurate percentage 
gain or loss based upon the current price. 

For our first two trades, which occurred at a stock price of $20 per 
share, the $2 gain corresponds to a 10% gain and the $3 loss corre-
sponds to a 15% loss. For the last two trades, taken at a stock price of 
$50 per share, the $10 gain corresponds to a 20% gain and the $5 loss 
corresponds to a 10% loss. 

The formulas to convert raw trade P&L's to percentage gains and 
losses for longs and shorts are as follows: 
(2.10a) P&L% = Exit Price/Entry Price-1 (for longs) 
(2.10b) P&L% = Entry Price/Exit Price-1 (for shorts) 

or we can use the following formula to convert both longs and 
shorts:  
(2.10c) P&L% = P&L in Points/Entry Price 

                                                                 
3 Prudence requires that we USC a largest loss at least as big as the largest loss 
seen in the past. As the future unfolds and we obtain more and more data, we will 
derive longer runs of losses. For instance, if ] flip a coin 100 times I might see it 
come up tails 12 times for a row at the longest run of tails. If I go and flip it 1,000 
times, I most likely will see a longer run of tails. This same principle is at work 
when we trade. Not only should we expect longer streaks of losing trades in the 
future, we should also expect a bigger largest losing trade. 

Thus, for our 4 hypothetical trades, we now have the following 
stream of percentage gains and losses (assuming all trades are long 
trades): 

+.l, -.15, +.2, -.l 
We call this new stream of translated P&L's the equalized data, be-

cause it is equalized to the price of the underlying instrument when the 
trade occurred. 

To account for commissions and slippage, you must adjust the exit 
price downward in Equation (2.10a) for an amount commensurate with 
the amount of the commissions and slippage. Likewise, you should ad-
just the exit price upward in (2.10b). If you are using (2.10c), you must 
deduct the amount of the commissions and slippage (in points again) 
from the numerator P&L in Points. 

Next we determine our optimal f on these percentage gains and 
losses. The f that is optimal is .09. We must now convert this optimal f 
of .09 into a dollar amount based upon the current stock price. This is 
accomplished by the following formula: 
(2.11) f$ = Biggest % Loss*Current Price*$ per Point/-f 

Thus, since our biggest percentage loss was -.15, the current price is 
$100 per share, and the number of dollars per full point is 1 (since we 
are only dealing with buying 1 share), we can determine our f$ as: 
f$ = -.15*100*1/-.09 = -15/-.09 = 166.67 

Thus, we would optimally buy 1 share for every $166.67 in account 
equity. If we used 100 shares as our unit size, the only variable affected 
would have been the number of dollars per full point, which would have 
been 100. The resulting f$ would have been $16,666.67 in equity for 
every 100 shares. 

Suppose now that the stock went down to $3 per share. Our f$ equa-
tion would be exactly the same except for the current price variable 
which would now be 3. Thus, the amount to finance 1 share by be-
comes: 
f$ = -.15*3*1/-.09 = -.45/-.09 = 5 

We optimally would buy 1 share for every $5 we had in account eq-
uity. 

Notice that the optimal f does not change with the current price of 
the stock. It remains at .09. However, the f$ changes continuously as the 
price of the stock changes. This doesn't mean that you must alter a posi-
tion you are already in on a daily basis, but it does make it more likely 
to be beneficial that you do so. As an example, if you are long a given 
stock and it declines, the dollars that you should allocate to 1 unit (100 
shares in this case) of this stock will decline as well, with the optimal f 
determined off of equalized data. If your optimal f is determined off of 
the raw trade P&L data, it will not decline. In both cases, your daily 
equity is declining. Using the equalized optimal f makes it more likely 
that adjusting your position size daily will be beneficial. 

Equalizing the data for your optimal f necessitates changes in the 
by-products.4 We have already seen that both the optimal f and the 
geometric mean (and hence the TWR) change. The arithmetic average 
trade changes because now it, too, must be based on the idea that all 
trades in the past must be adjusted as if they had occurred from the cur-
rent price. Thus, in our hypothetical example of outcomes on 1 share of 
+2, -3,+10, and -5, we have an average trade of $1. When we take our 
percentage gains and losses of +.1, -15, +.2, and -.1, we have an average 
trade (in percent) of +.5. At $100 per share, this translates into an aver-
age trade of 100*.05 or $5 per trade. At $3 per share, the average trade 
becomes $.15 (3*.05). 

The geometric average trade changes as well. Recall Equation 
(1.14) for the geometric average trade: 
(1.14) GAT = G*(Biggest Loss/-f) 

where 
G = Geometric mean 1. 
f = Optimal fixed fraction. 

                                                                 
4 Risk-of-ruin equations, although not directly addressed in this text, must also be 
adjusted to reflect equalized data when being used. Generally, risk-of-ruin equa-
tions use the raw trade P&L data as input. However, when you use equalized 
data, the new stream of percentage gains and losses must be multiplied by the 
current price of the underlying instrument and the resulting stream used. Thus, a 
stream of percentage gains and losses such as .1, -.15, .2, -.1 translates into a 
stream of 10, -15, 20, -10 for an underlying at a current price of $100. This new 
stream should then be used as the data for the risk-of-ruin equations. 
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(and, of course, our biggest loss is always a negative number). 
This equation is the equivalent of: 
GAT = (geometric mean-1)*f$ 
We have already obtained a new geometric mean by equalizing the 

past data. The f$ variable, which is constant when we do not equalize 
the past data, now changes continuously, as it is a function of the current 
underlying price. Hence our geometric average trade changes continu-
ously as the price of the underlying instrument changes. 

Our threshold to the geometric also must be changed to reflect the 
equalized data. Recall Equation (2.02) for the threshold to the geomet-
ric: 
(2.02) T = AAT/GAT*Biggest Loss/-f 

where 
T = The threshold to the geometric. 
AAT = The arithmetic average trade. 
GAT = The geometric average trade. 
f = The optimal f (0 to 1). 
This equation can also be rewritten as: T = AAT/GAT*f$ 
Now, not only do the AAT and GAT variables change continuously 

as the price of the underlying changes, so too does the f$ variable. 
Finally, when putting together a portfolio of market systems we 

must figure daily HPRs. These too are a function of f$: 
(2.12) Daily HPR = D$/f$+1 

where 
D$ = The dollar gain or loss on 1 unit from the previous day. This is 

equal to (Tonight's Close-Last Night's Close)*Dollars per Point. 
f$ = The current optimal fin dollars, calculated from Equation 

(2.11). Here, however, the current price variable is last night's close. 
For example, suppose a stock tonight closed at $99 per share. Last 

night it was $102 per share. Our biggest percentage loss is -15. If our f is 
.09 then our f$ is: 
f$ = -.15*102 *1/-.09  
= -15.3/-.09  
= 170 

Since we are dealing with only 1 share, our dollars per point value is 
$1. We can now determine our daily HPR for today by Equation (2.12) 
as: 
(2.12) Daily HPR = (99-102)*1/170+1 = -3/170+1 = -.01764705882+1 
= .9823529412 

Return now to what was said at the outset of this discussion. Given 
a stream of trade P&L's, the optimal f will make the greatest geometric 
growth on that stream (provided it has a positive arithmetic mathemati-
cal expectation). We use the stream of trade P&L's as a proxy for the 
distribution of possible outcomes on the next trade. Along this line of 
reasoning, it may be advantageous for us to equalize the stream of past 
trade profits and losses to be what they would be if they were performed 
at the current market price. In so doing, we may obtain a more realistic 
proxy of the distribution of potential trade profits and losses on the next 
trade. Therefore, we should figure our optimal f from this adjusted dis-
tribution of trade profits and losses. 

This does not mean that we would have made more by using the op-
timal f off of the equalized data. We would not have, as the following 
demonstration shows: 
 P&L Percentage Underly-

ing Price 
f$ Number of 

Shares 
Cumulative 

At f = .09, trading the equalized method:  $10,000 

 +2 .1 20 $33.33 300 $10,600 
 -3 -.15 20 $33.33 318 $9,646 
 +10 .2 50 $83.33 115.752 $10,803.52 
 -5 -.1 50 $83.33 129.642 $10,155.31 
 P&L Percentage Underly-

ing Price 
f$ Number of 

Shares  
Cumulative 

At f = .17, trading the nonequalized method: $10,000 
 +2 .1 20 $29.41 340.02 $10,680.04 
 -3 -.15 20 $29.41 363.14 $9,590.61 
 +10 .2 50 $29.41 326.1 $12,851.61 
 -5 -.1 50 $29.41 436.98 $10,666.71 

However, if all of the trades were figured off of the current price 
(say $100 per share), the equalized optimal f would have made more 
than the raw optimal f. 

Which then is the better to use? Should we equalize our data and de-
termine our optimal f (and its by-products), or should we just run every-
thing as it is? This is more a matter of your beliefs than it is mathemati-
cal fact. It is a matter of what is more pertinent in the item you are trad-
ing, percentage changes or absolute changes. Is a $2 move in a $20 
stock the same as a $10 move in a $100 stock? What if we are discuss-
ing dollars and deutsche marks? Is a 30-point move at .4500 the same as 
a .40-point move at .6000? 

My personal opinion is that you are probably better off with the 
equalized data. Often the matter is moot, in that if a stock has moved 
from $20 per share to $100 per share and we want to determine the op-
timal f, we want to use current data. The trades that occurred at $20 per 
share may not be representative of the way the stock is presently trading, 
regardless of whether they are equalized or not. 

Generally, then, you are better off not using data where the underly-
ing was at a dramatically different price than it presently is, as the char-
acteristics of the way the item trades may have changed as well. In that 
sense, the optimal f off of the raw data and the optimal f off of the 
equalized data will be identical if all trades occurred at the same under-
lying price. 

So we can state that if it does matter a great deal whether you equal-
ize your data or not, then you're probably using too much data anyway. 
You've gone so far into the past that the trades generated back then 
probably are not very representative of the next trade. In short, we can 
say that it doesn't much matter whether you use equalized data or not, 
and if it does, there's probably a problem. If there isn't a problem, and 
there is a difference between using the equalized data and the raw data, 
you should opt for the equalized data. This does not mean that the opti-
mal f figured off of the equalized data would have been optimal in the 
past. It would not have been. The optimal f figured off of the raw data 
would have been the optimal in the past. However, in terms of determin-
ing the as-yet-unknown answer to the question of what will be the opti-
mal f (or closer to it tomorrow), the optimal f figured off of the equal-
ized data makes better sense, as the equalized data is a fairer representa-
tion of the distribution of possible outcomes on the next trade. 

Equations (2.10a) through (2.10c) will give different answers de-
pending upon whether the trade was initiated as a long or a short. For 
example, if a stock is bought at 80 and sold at 100, the percentage gain 
is 25. However, if a stock is sold short at 100 and covered at 80, the gain 
is only 20%. In both cases, the stock was bought at 80 and sold at 100, 
but the sequence-the chronology of these transactions-must be ac-
counted for. As the chronology of transactions affects the distribution of 
percentage gains and losses, we assume that the chronology of transac-
tions in the future will be more like the chronology in the past than not. 
Thus, Equations (2.10a) through (2,10c) will give different answers for 
longs and shorts. 

Of course, we could ignore the chronology of the trades (using 
2.10c for longs and using the exit price in the denominator of 2.10c for 
shorts), but to do so would be to reduce the information content of the 
trade's history. Further, the risk involved with a trade is a function of the 
chronology of the trade, a fact we would be forced to ignore. 

DOLLAR AVERAGING AND SHARE AVERAGING IDEAS 
Here is an old, underused money-management technique that is an 

ideal tool for dealing with situations where you are absent knowledge. 
Consider a hypothetical motorist, Joe Putzivakian, case number 

286952343. Every week, he puts $20 of gasoline into his auto, regard-
less of the price of gasoline that week. He always gets $20 worth, and 
every week he uses the $20 worth no matter how much or how little that 
buys him. When the price for gasoline is higher, it forces him to be more 
austere in his driving. 

As a result, Joe Putzivakian will have gone through life buying 
more gasoline when it is cheaper, and buying less when it was more 
expensive. He will have therefore gone through life paying a below 
average cost per gallon of gasoline. In other words, if you averaged the 
cost of a gallon of gasoline for all of the weeks of which Joe was a mo-
torist, the average would have been higher than the average that Joe 
paid. 
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Now consider his hypothetical cousin, Cecil Putzivakian, case num-
ber 286952344. Whenever he needs gasoline, he just fills up his pickup 
and complains about the high price of gasoline. As a result, Cecil has 
used a consistent amount of gas each week, and has therefore paid the 
average price for it throughout his motoring lifetime. 

Now let's suppose you are looking at a long-term investment pro-
gram. You decide that you want to put money into a mutual fund to be 
used for your retirement many years down the road. You believe that 
when you retire the mutual fund will be at a much higher value than it is 
today. That is, you believe that in an asymptotic sense the mutual fund 
will be an investment that makes money (of course, in an asymptotic 
sense, lightning does strike twice). However, you do not know if it is 
going to go up or down over the next month, or the next year. You are 
absent knowledge about the nearer-term performance of the mutual 
fund. 

To cope with this, you can dollar average into the mutual fund. Say 
you want to space your entry into the mutual fund over the course of 
two years. Further, say you have $36,000 to invest. Therefore, every 
month for the next 24 months you will invest $1,500 of this $36,000 into 
the fund, until after 24 months you will be completely invested. By so 
doing, you have obtained a below average cost into the fund. "Average" 
as it is used here refers to the average price of the fund over the 24-
month period during which you are investing. It doesn't necessarily 
mean that you will get a price that is cheaper than if you put the full 
$36,000 into it today, nor does it guarantee that at the end of these 24 
months of entering the fund you will show a profit on your $36,000. The 
amount you have in the fund at that time may be less than the $36,000. 
What it does mean is that if you simply entered arbitrarily at some point 
along the next 24 months with your full $36,000 in one shot, you would 
probably have ended up buying fewer mutual fund shares, and hence 
have paid a higher price than if you dollar averaged in. 

The same is true when you go to exit a mutual fund, only the exit 
side works with share averaging rather than dollar averaging. Say it is 
now time for you to retire and you have a total of 1,000 shares in this 
mutual fund, You don't know if this is a good time for you to be getting 
out or not, so you decide to take 2 years (24 months), to average out of 
the fund. Here's how you do it. You take the total number of shares you 
have (1,000) and divide it by the number of periods you want to get out 
over (24 months). Therefore, since 1,000/24 = 41.67, you will sell 41.67 
shares every month for the next 24 months. In so doing, you will have 
ended up selling your shares at a higher price than the average price 
over the next 24 months. Of course, this is no guarantee that you will 
have sold them for a higher price than you could have received for them 
today, nor does it guarantee that you will have sold your shares at a 
higher price than what you might get if you were to sell all of your 
shares 24 months from now. What you will get is a higher price than the 
average over the time period that you are averaging out over. That is 
guaranteed. 

These same principles can be applied to a trading account. By dollar 
averaging money into a trading account as opposed to simply "taking 
the plunge" at some point during the time period you are averaging over, 
you will have gotten into the account at a better "average price." Absent 
knowledge of what the near-term equity changes in the account will be 
you are better off, on average, to dollar average into a trading program. 
Don't just rely on your gut and your nose, use the measures of depend-
ency discussed in Chapter 1 on the monthly equity changes of a trading 
program. Try to see if there is dependency in the monthly equity 
changes. If there is dependency to a high enough confidence level so 
you can plunge in at a favorable point, then do so. However, if there 
isn't a high enough confidence in the dependency of the monthly equity 
changes, then dollar average into (and share average out of) a trading 
program. In so doing, you will be ahead in an asymptotic sense. 

The same is true for withdrawing money from an account. The way 
to share average out of a trading program (when there aren't any shares, 
like a commodity account) is to decide upon a date to start averaging 
out, as well as how long a period of time to average out for. On the date 
when you are going to start averaging out, divide the equity in the ac-
count by 100. This gives you the value of "1 share." Now, divide 100 by 
the number of periods that you want to average out over. Say you want 
to average out of the account weekly over the next 20 weeks. That 
makes 20 periods. Dividing 100 by 20 gives 5. Therefore, you are going 
to average out of your account by 5 "shares" per week. Multiply the 
value you had figured for 1 share by 5, and that will tell you how much 

money to withdraw from your trading account this week. Now, going 
into next week, you must keep track of how many shares you have left. 
Since you got out of 5 shares last week, you are left with 95. When the 
time comes along for withdrawal number 2, divide the equity in your 
account by 95 and multiply by 5. This will give you the value of the 5 
shares you are "cashing in" this week. You will keep on doing this until 
you have zero shares left, at which point no equity will be left in your 
account. By doing this, you have probably obtained a better average 
price for getting out of your account than you would have received had 
you gotten out of the account at some arbitrary point along this 20-week 
withdrawal period. 

This principle of averaging in and out of a trading account is so 
simple, you have to wonder why no one ever does it. I always ask the 
accounts that I manage to do this. Yet I have never had anyone, to date, 
take me up on it. The reason is simple. The concept, although com-
pletely valid, requires discipline and time in order to work-exactly the 
same ingredients as those required to make the concept of optimal f 
work. 

Just ask Joe Putzivakian. It's one thing to understand the concepts 
and believe in them. It's another thing to do it. 

THE ARC SINE LAWS AND RANDOM WALKS 
Now we turn the discussion toward drawdowns. First, however, we 

need to study a little bit of theory in the way of the first and second arc 
sine laws. These are principles that pertain to random walks. The stream 
of trade P&L's that you are dealing with may not be truly random. The 
degree to which the stream of P&L's you are using differs from being 
purely random is the degree to which this discussion will not pertain to 
your stream of profits and losses. Generally though, most streams of 
trade profits and losses are nearly random as determined by the runs test 
and the linear correlation coefficient (serial correlation). 

Furthermore, not only do the arc sine laws assume that you know in 
advance what the amount that you can win or lose is, they also assume 
that the amount you can win is equal to the amount you can lose, and 
that this is always a constant amount. In our discussion, we will assume 
that the amount that you can win or lose is $1 on each play. The arc sine 
laws also assume that you have a 50% chance of winning and a 50% 
chance of losing. Thus, the arc sine laws assume a game where the 
mathematical expectation is 0. 

These caveats make for a game that is considerably different, and 
considerably more simple, than trading is. However, the first and second 
arc sine laws are exact for the game just described. To the degree that 
trading differs from the game just described, the arc sine laws do not 
apply. For the sake of learning the theory, however, we will not let these 
differences concern us for the moment.  

Imagine a truly random sequence such as coin tossing5 where we 
win 1 unit when we win and we lose 1 unit when we lose. If we were to 
plot out our equity curve over X tosses, we could refer to a specific 
point (X,Y), where X represented the Xth toss and Y our cumulative 
gain or loss as of that toss. 

We define positive territory as anytime the equity curve is above the 
X axis or on the X axis when the previous point was above the X axis. 
Likewise, we define negative territory as anytime the equity curve is 
below the X axis or on the X axis when the previous point was below 
the X axis. We would expect the total number of points in positive terri-
tory to be close to the total number of points in negative territory. But 
this is not the case. 

If you were to toss the coin N times, your probability (Prob) of 
spending K of the events in positive territory is: 
(2.13) Prob~l/(Pi*K^.5*(N-K)^.5) 

where 
Pi = 3.141592654. 
The symbol ~ means that both sides tend to equality in the limit. In 

this case, as either K or (N-K) approaches infinity, the two sides of the 
equation will tend toward equality. 

                                                                 
5 Although empirical tests show that coin tossing is not a truly random sequence 
due to slight imperfections in the coin used, we will assume here, and elsewhere 
in the text when referring to coin tossing, that we are tossing an ideal coin with 
exactly a .5 chance of landing heads or tails. 
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Thus, if we were to toss a coin 10 times (N = 10) we would have the 
following probabilities of being in positive territory for K of the tosses: 
K  Probability6  
0  .14795  
1  .1061  
2  .0796  
3  .0695  
4  .065  
5  .0637  
6  .065  
7  .0695  
6  .0796  
9  .1061  
10  .14795  

You would expect to be in positive territory for 5 of the 10 tosses, 
yet that is the least likely outcome! In fact, the most likely outcomes are 
that you will be in positive territory for all of the tosses or for none of 
them! 

This principle is formally detailed in the first arc sine law which 
states: 

For a Fixed A (0<A<1) and as N approaches infinity, the probability 
that K/N spent on the positive side is < A tends to: 
(2.14) Prob{(K/N)<A} = 2/Pi*ARCSIN(A^.5) 

where 
Pi = 3.141592654. 
Even with N as small as 20, you obtain a very close approximation 

for the probability. 
Equation (2.14), the first arc sine law, tells us that with probability 

.1, we can expect to see 99.4% of the time spent on one side of the ori-
gin, and with probability .2, the equity curve will spend 97.6% of the 
time on the same side of the origin! With a probability of .5, we can 
expect the equity curve to spend in excess of 85.35% of the time on the 
same side of the origin. That is just how perverse the equity curve of a 
fair coin is! 

Now here is the second arc sine law, which also uses Equation 
(2.14) and hence has the same probabilities as the first arc sine law, but 
applies to an altogether different incident, the maximum or minimum of 
the equity curve. The second arc sine law states that the maximum (or 
minimum) point of an equity curve will most likely occur at the end-
points, and least likely at the center. The distribution is exactly the same 
as the amount of time spent on one side of the origin! 

If you were to toss the coin N times, your probability of achieving 
the maximum (or minimum) at point K in the equity curve is also given 
by Equation (2.13): 
(2.13) Prob~l/(Pi*K^.5*(N-K)^.5) ]where Pi = 3.141592654. 

Thus, if you were to toss a coin 10 times (N = 10) you would have 
the following probabilities of the maximum (or minimum) occurring on 
the Kth toss: 
K Probability 
0 .14795  
1 .1061  
2 .0796  
3 .0695  
4 .065  
5 .0637  
6 .065  
7 .0695  
8 .0796  
9 .1061  
10 .14795  

In a nutshell, the second arc sine law states that the maximum or 
minimum are most likely to occur near the endpoints of the equity curve 
and least likely to occur in the center. 

TIME SPENT IN A DRAWDOWN 
Recall the caveats involved with the arc sine laws. That is, the arc 

sine laws assume a 50% chance of winning, and a 50% chance of losing. 
                                                                 
6 Note that since neither K nor N may equal 0 in Equation (2.13) (as you would 
then be dividing by 0), we can discern the probabilities corresponding to K = 0 
and K = N by summing the probabilities from K = l to K = N-l and subtracting 
this sum from 1. Dividing this difference by 2 will give us the probabilities asso-
ciated with K = 0 and K = N. 

Further, they assume that you win or lose the exact same amounts and 
that the generating stream is purely random. Trading is considerably 
more complicated than this. Thus, the arc sine laws don't apply in a pure 
sense, but they do apply in spirit. 

Consider that the arc sine laws worked on an arithmetic mathemati-
cal expectation of 0. Thus, with the first law, we can interpret the per-
centage of time on either side of the zero line as the percentage of time 
on either side of the arithmetic mathematical expectation. Likewise with 
the second law, where, rather than looking for an absolute maximum 
and minimum, we were looking for a maximum above the mathematical 
expectation and a minimum below it. The minimum below the mathe-
matical expectation could be greater than the maximum above it if the 
minimum happened later and the arithmetic mathematical expectation 
was a rising line (as in trading) rather than a horizontal line at zero. 

Thus, we can interpret the spirit of the arc sine laws as applying to 
trading in the following ways. (However, rather than imagining the im-
portant line as being a, horizontal line at zero, we should imagine a line 
that slopes upward at the rate of the arithmetic average trade (if we are 
constant-con-tract trading). If we are Axed fractional trading, the line 
will be one that curves upward, getting ever steeper, 'at such a rate that 
the next point equals the current point times the geometric mean.) We 
can interpret the first arc sine law as stating that we should expect to be 
on one side of the mathematical expectation line for far more trades than 
we spend on the other side of the mathematical expectation line. Re-
garding the second arc sine law, we should expect the maximum devia-
tions from the mathematical expectation line, either above or below it, 
as being most likely to occur near the beginning or the end of the equity 
curve graph and least likely near the center of it. 

You will notice another characteristic that happens when you are 
trading at the optimal f levels. This characteristic concerns the length of 
time you spend between two equity high points. If you are trading at the 
optimal f level, whether you are trading just 1 market system or a port-
folio of market systems, the time of the longest drawdown7 (not neces-
sarily the worst, or deepest, drawdown) takes to elapse is usually 35 to 
55% of the total time you are looking at. This seems to be true no matter 
how long or short a time period you are looking at! (Again, time in this 
sense is measured in trades.) 

This is not a hard-and-fast rule. Rather, it is the effect of the spirit of 
the arc sine laws at work. It is perfectly natural, and should be expected 

This principle appears to hold true no matter how long or short a pe-
riod we are looking at. This means that we can expect to be in the larg-
est drawdown for approximately 35 to 55% of the trades over the life of 
a trading program we are employing! This is true whether we are trading 
1 market system or an entire portfolio. Therefore, we must learn to ex-
pect to be within the maximum drawdown for 35 to 55% of the life of a 
program that we wish to trade. Knowing this before the fact allows us to 
be mentally prepared to trade through it. 

Whether you are about to manage an account, about to have one 
managed by someone else, or about to trade your own account, you 
should bear in mind the spirit of the arc sine laws and how they work on 
your equity curve relative to the mathematical expectation line, along 
with the 35% to 55% rule. By so doing you will be tuned to reality re-
garding what to expect as the future unfolds. 

We have now covered the empirical techniques entirely. Further, 
we have discussed many characteristics of fixed fractional trading and 
have introduced some salutary techniques, which will be used 
throughout the sequel. We have seen that by trading at the optimal 
levels of money management, not only can we expect substantial 
drawdowns, but the time spent between two equity highs can also be 
quite substantial. Now we turn our attention to studying the paramet-
ric techniques, the subject of the next chapter. 

                                                                 
7 7By longest drawdown here is meant the longest time, in terms of the number of 
elapsed trades, between one equity peak and the time (or number of elapsed 
trades) until that peak is equaled or exceeded. 
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Chapter 3 - Parametric Optimal f on the 
Normal Distribution 

Now that we are finished with our discussion of the empirical 
techniques as well as the characteristics of fixed fractional trading, we 
enter the realm of the parametric techniques. Simply put, these tech-
niques differ from the empirical in that they do not use the past history 
itself as the data to be operated on Bather, we observe the past history 
to develop a mathematical description of that distribution of that data 
This mathematical description is based upon what has happened in 
the past as well as what we expect to happen in the future. In the pa-
rametric techniques we operate on these mathematical descriptions 
rather than on the past history itself 

The mathematical descriptions used in the parametric techniques 
are most often what are referred to as probability distributions. There-
fore, if we are to study the parametric techniques, we must study prob-
ability distributions (in general) as a foundation We will then move on 
to studying a certain type of distribution, the Normal Distribution. 
Then we will see how to find the optimal f and its byproducts on the 
Normal Distribution. 

THE BASICS OF PROBABILITY DISTRIBUTIONS 
Imagine if you will that you are at a racetrack and you want to keep 

a log of the position in which the horses in a race finish. Specifically, 
you want to record whether the horse in the pole position came in first, 
second, and so on for each race of the day. You will only record ten 
places. If the horse came in worse than in tenth place, you will record it 
as a tenth-place finish. If you do this for a number of days, you will have 
gathered enough data to see the distribution of finishing positions for a 
horse starting out in the pole position. Now you take your data and plot 
it on a graph. The horizontal axis represents where the horse finished, 
with the far left being the worst finishing position (tenth) and the far 
right being a win. The vertical axis will record how many times the pole 
position horse finished in the position noted on the horizontal axis. You 
would begin to see a bell-shaped curve develop. 

Under this scenario, there are ten possible finishing positions for 
each race. We say that there are ten bins in this distribution. What if, 
rather than using ten bins, we used five? The first bin would be for a 
first- or second-place finish, the second bin for a third-or fourth-place 
finish, and so on. What would have been the result? 

Using fewer bins on the same set of data would have resulted in a 
probability distribution with the same profile as one determined on the 
same data with more bins. That is, they would look pretty much the 
same graphically. However, using fewer bins does reduce the informa-
tion content of a distribution. Likewise, using more bins increases the 
information content of a distribution. If, rather than recording the finish-
ing position of the pole position horse in each race, we record the time 
the horse ran in, rounded to the nearest second, we will get more than 
ten bins; and thus the information content of the distribution obtained 
will be greater. 

If we recorded the exact finish time, rather than rounding finish 
times to use the nearest second, we would be creating what is called a 
continuous distribution. In a continuous distribution, there are no bins. 
Think of a continuous distribution as a series of infinitely thin bins (see 
Figure 3-1). A continuous distribution differs from a discrete distribu-
tion, the type we discussed first in that a discrete distribution is a binned 
distribution. Although binning does reduce the information content of a 
distribution, in real life it is often necessary to bin data. Therefore, in 
real life it is often necessary to lose some of the information content of a 
distribution, while keeping the profile of the distribution the same, so 
that you can process the distribution. Finally, you should know that it is 
possible to take a continuous distribution and make it discrete by 
binning it, but it is not possible to take a discrete distribution and make 
it continuous. 

 
Figure 3-1 A continuous distribution is a series of infinitely thin bins 

When we are discussing the profits and losses of trades, we are es-
sentially discussing a continuous distribution. A trade can take a multi-
tude of values (although we could say that the data is binned to the near-
est cent). In order to work with such a distribution, you may find it nec-
essary to bin the data into, for example, one-hundred-dollar-wide bins. 
Such a distribution would have a bin for trades that made nothing to 
$99.99, the next bin would be for trades that made $100 to $199.99, and 
so on. There is a loss of information content in binning this way, yet the 
profile of the distribution of the trade profits and losses remains rela-
tively unchanged. 

DESCRIPTIVE MEASURES OF DISTRIBUTIONS 
Most people are familiar with the average, or more specifically the 

arithmetic mean. This is simply the sum of the data points in a distribu-
tion divided by the number of data points: 
(3.01) A = (∑[i = 1,N] Xi)/N 

where 
A = The arithmetic mean. 
Xi = The ith data point. 
N = The total number of data points in the distribution. 
The arithmetic mean is the most common of the types of measures 

of location, or central tendency of a body of data, a distribution. How-
ever, you should be aware that the arithmetic mean is not the only avail-
able measure of central tendency and often it is not the best. The arith-
metic mean tends to be a poor measure when a distribution has very 
broad tails. Suppose you randomly select data points from a distribution 
and calculate their mean. If you continue to do this you will find that the 
arithmetic means thus obtained converge poorly, if at all, when you are 
dealing with a distribution with very broad tails. 

Another important measure of location of a distribution is the me-
dian. The median is described as the middle value when data are ar-
ranged in an array according to size. The median divides a probability 
distribution into two halves such that the area under the curve of one 
half is equal to the area under the curve of the other half. The median is 
frequently a better measure of central tendency than the arithmetic 
mean. Unlike the arithmetic mean, the median is not distorted by ex-
treme outlier values. Further, the median can be calculated even for 
open-ended distributions. An open-ended distribution is a distribution in 
which all of the values in excess of a certain bin are thrown into one bin. 
An example of an open-ended distribution is the one we were compiling 
when we recorded the finishing position in horse racing for the horse 
starting out in the pole position. Any finishes worse than tenth place 
were recorded as a tenth place finish. Thus, we had an open distribution. 
The median is extensively used by the U.S. Bureau of the Census. 

The third measure of central tendency is the mode-the most frequent 
occurrence. The mode is the peak of the distribution curve. In some 
distributions there is no mode and sometimes there is more than one 
mode. Like the median, the mode can often be regarded as a superior 
measure of central tendency. The mode is completely independent of 
extreme outlier values, and it is more readily obtained than the arithme-
tic mean or the median. 

We have seen how the median divides the distribution into two 
equal areas. In the same way a distribution can be divided by three 
quartiles (to give four areas of equal size or probability), or nine deciles 
(to give ten areas of equal size or probability) or 99 percentiles (to give 
100 areas of equal size or probability). The 50th percentile is the me-
dian, and along with the 25th and 75th percentiles give us the quartiles. 
Finally, another term you should become familiar with is that of a quan-
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tile. A quantile is any of the N-1 variate values that divide the total fre-
quency into N equal parts. 

We now return to the mean. We have discussed the arithmetic mean 
as a measure of central tendency of a distribution. You should be aware 
that there are other types of means as well. These other means are less 
common, but they do have significance in certain applications. 

First is the geometric mean, which we saw how to calculate in the 
first chapter. The geometric mean is simply the Nth root of all the data 
points multiplied together. 
(3.02) G = (∏[i = 1,N]Xi)^(1/N) 

where 
G = The geometric mean. 
Xi = The ith data point. 
N = The total number of data points in the distribution. 
The geometric mean cannot be used if any of the variate-values is 

zero or negative. 
We can state that the arithmetic mathematical expectation is the 

arithmetic average outcome of each play (on a constant I-unit basis) 
minus the bet size. Likewise, we can state that the geometric mathemati-
cal expectation is the geometric average outcome of each play (on a 
constant I-unit basis) minus the bet size. 

Another type of mean is the harmonic mean. This is the reciprocal 
of the mean of the reciprocals of the data points. 
(3.03) 1/∏ = 1/N ∑[i = 1,N]1/Xi 

where 
H = The harmonic mean. 
Xi = The ith data point. 
N = The total number of data points in the distribution. 
The final measure of central tendency is the quadratic mean or roof 

mean square. 
(3.04) R^2 = l/N∑[i = 1,N]Xi^2 

where 
R = The root mean square. 
Xi = The ith data point. 
N = The total number of data points in the distribution. 
You should realize that the arithmetic mean (A) is always greater 

than or equal to the geometric mean (G), and the geometric mean is 
always greater than or equal to the harmonic mean (H): 
(3.05) H<=G<=A 

where 
H = The harmonic mean. 
G = The geometric mean. 
A = The arithmetic mean. 

MOMENTS OF A DISTRIBUTION 
The central value or location of a distribution is often the first thing 

you want to know about a group of data, and often the next thing you 
want to know is the data's variability or "width" around that central 
value. We call the measures of a distributions central tendency the first 
moment of a distribution. The variability of the data points around this 
central tendency is called the second moment of a distribution. Hence 
the second moment measures a distribution's dispersion about the first 
moment. 

As with the measure of central tendency, many measures of disper-
sion are available. We cover seven of them here, starting with the least 
common measures and ending with the most common. 

The range of a distribution is simply the difference between the 
largest and smallest values in a distribution. Likewise, the 10-90 percen-
tile range is the difference between the 90th and 10th percentile points. 
These first two measures of dispersion measure the spread from one 
extreme to the other. The remaining five measures of dispersion meas-
ure the departure from the central tendency (and hence measure the half-
spread). 

The semi-interquartile range or quartile deviation equals one half 
of the distance between the first and third quartiles (the 25th and 75th 
per-centiles). This is similar to the 10-90 percentile range, except that 
with this measure the range is commonly divided by 2. 

The half-width is an even more frequently used measure of disper-
sion. Here, we take the height of a distribution at its peak, the mode. If 
we find the point halfway up this vertical measure and run a horizontal 
line through it perpendicular to the vertical line, the horizontal line will 
touch the distribution at one point to the left and one point to the right. 
The distance between these two points is called the half-width. 

Next, the mean absolute deviation or mean deviation is the arith-
metic average of the absolute value of the difference between the data 
points and the arithmetic average of the data points. In other words, as 
its name implies, it is the average distance that a data point is from the 
mean. Expressed mathematically: 
(3.06) M = 1/N ∑[i = 1,N] ABS (Xi-A) 

where 
M = The mean absolute deviation. 
N = The total number of data points. 
Xi = The ith data point. 
A = The arithmetic average of the data points. 
ABS() = The absolute value function. 
Equation (3.06) gives us what is known as the population mean ab-

solute deviation. You should know that the mean absolute deviation can 
also be calculated as what is known as the sample mean absolute devia-
tion. To calculate the sample mean absolute deviation, replace the term 
1/N in Equation (3.06) with 1/(N-1). You use the sample version when 
you are making judgments about the population based on a sample of 
that population. 

The next two measures of dispersion, variance and standard devia-
tion, are the two most commonly used. Both are used extensively, so we 
cannot say that one is more common than the other; suffice to say they 
are both the most common. Like the mean absolute deviation, they can 
be calculated two different ways, for a population as well as a sample. 
The population version is shown, and again it can readily be altered to 
the sample version by replacing the term 1/N with 1/(N-1). 

The variance is the same thing as the mean absolute deviation ex-
cept that we square each difference between a data point and the average 
of the data points. As a result, we do not need to take the absolute value 
of each difference, since multiplying each difference by itself makes the 
result positive whether the difference was positive or negative. Further, 
since each distance is squared, extreme outliers will have a stronger 
effect on the variance than they would on the mean absolute deviation. 
Mathematically expressed: 
(3.07) V = 1/N ∑[i = 1,N] ((Xi-A)^2) 

where V = The variance. 
N = The total number of data points. 
Xi = The ith data point. 
A = The arithmetic average of the data points. 
Finally, the standard deviation is related to the variance (and hence 

the mean absolute deviation) in that the standard deviation is simply the 
square root of the variance. 

The third moment of a distribution is called skewness, and it de-
scribes the extent of asymmetry about a distributions mean (Figure 3-2). 
Whereas the first two moments of a distribution have values that can be 
considered dimensional (i.e., having the same units as the measured 
quantities), skew-ness is defined in such a way as to make it nondimen-
sional. It is a pure number that represents nothing more than the shape 
of the distribution. 
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Skewness

Skew = 0

Negative Positive

 
Figure 3-2 Skewness 

A positive value for skewness means that the tails are thicker on the 
positive side of the distribution, and vice versa. A perfectly symmetrical 
distribution has a skewness of 0. 

Mean
Mode

Median

 
Figure 3-3 Skewness alters location. 

In a symmetrical distribution the mean, median, and mode are all at 
the same value. However, when a distribution has a nonzero value for 
skewness, this changes as depicted in Figure 3-3. The relationship for a 
skewed distribution (any distribution with a nonzero skewness) is: 
(3.08) Mean-Mode = 3*(Mean-Median) 

As with the first two moments of a distribution, there are numerous 
measures for skewness, which most frequently will give different an-
swers. These measures now follow: 
(3.09) S = (Mean-Mode)/Standard Deviation 
(3.10) S = (3*(Mean-Median))/Standard Deviation 

These last two equations, (3.09) and (3.10), are often referred to as 
Pearson's first and second coefficients of skewness, respectively. Skew-
ness is also commonly determined as: 
(3.11) S = 1/N ∑[i = 1,N] (((Xi-A)/D)^3) 

where 
S = The skewness. 
N = The total number of data points. 
Xi = The ith data point. 
A = The arithmetic average of the data points. 
D = The population standard deviation of the data points. 

Mesokurtic
Platykurtic

Leptokurtic

 
Figure 3-4 Kurtosis. 

Finally, the fourth moment of a distribution, kurtosis (see Figure 
34) measures the peakedness or flatness of a distribution (relative to the 
Normal Distribution). Like skewness, it is a nondimensional quantity. A 
curve less peaked than the Normal is said to be platykurtic (kurtosis will 
be negative), and a curve more peaked than the Normal is called lepto-
kurtic (kurtosis will be positive). When the peak of the curve resembles 
the Normal Distribution curve, kurtosis equals zero, and we call this 
type of peak on a distribution mesokurtic. 

Like the preceding moments, kurtosis has more than one measure. 
The two most common are: 
(3.12) K = Q/P 

where 
K = The kurtosis. 
Q = The semi-interquartile range. 
P = The 10-90 percentile range. 

(3.13) K = (1/N (∑[i = 1,N] (((Xi-A)/D)^ 4)))-3 
where 
K = The kurtosis. 
N = The total number of data points. 
Xi = The ith data point. 
A = The arithmetic average of the data points. 
D = The population standard deviation of the data points. 
Finally, it should be pointed out there is a lot more "theory" behind 

the moments of a distribution than is covered here, For a more in-depth 
discussion you should consult one of the statistics books mentioned in 
the Bibliography. The depth of discussion about the moments of a dis-
tribution presented here will be more than adequate for our purposes 
throughout this text. 

Thus far, we have covered data distributions in a general sense. 
Now we will cover the specific distribution called the Normal Distribu-
tion. 

THE NORMAL DISTRIBUTION 
Frequently the Normal Distribution is referred to as the Gaussian 

distribution, or de Moivre's distribution, after those who are believed to 
have discovered it-Karl Friedrich Gauss (1777-1855) and, about a cen-
tury earlier and far more obscurely, Abraham de Moivre (1667-1754). 

The Normal Distribution is considered to be the most useful distri-
bution in modeling. This is due to the fact that the Normal Distribution 
accurately models many phenomena. Generally speaking, we can meas-
ure heights, weights, intelligence levels, and so on from a population, 
and these will very closely resemble the Normal Distribution. 

Let's consider what is known as Galton's board (Figure 3-5). This is 
a vertically mounted board in the shape of an isosceles triangle. The 
board is studded with pegs, one on the top row, two on the second, and 
so on. Each row down has one more peg than the previous row. The 
pegs are arranged in a triangular fashion such that when a ball is 
dropped in, it has a 50/50 probability of going right or left with each peg 
it encounters. At the base of the board is a series of troughs to record the 
exit gate of each ball. 
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Figure 3-5 Galton's board. 

The balls falling through Galton's board and arriving in the troughs 
will begin to form a Normal Distribution. The "deeper" the board is (i.e., 
the more rows it has) and the more balls are dropped through, the more 
closely the final result will resemble the Normal Distribution. 

The Normal is useful in its own right, but also because it tends to be 
the limiting form of many other types of distributions. For example, if X 
is distributed binomially, then as N tends toward infinity, X tends to be 
Normally distributed. Further, the Normal Distribution is also the limit-
ing form of a number of other useful probability distributions such as 
the Poisson, the Student's, or the T distribution. In other words, as the 
data (N) used in these other distributions increases, these distributions 
increasingly resemble the Normal Distribution. 

THE CENTRAL LIMIT THEOREM 
One of the most important applications for statistical purposes in-

volving the Normal Distribution has to do with the distribution of aver-
ages. The averages of samples of a given size, taken such that each sam-
pled item is selected independent of the others, will yield a distribution 
that is close to Normal. This is an extremely powerful fact, for it means 
that you can generalize about an actual random process from averages 
computed using sample data. 

Thus, we can state that if N random samples are drawn from a 
population, then the sums (or averages) of the samples will be ap-
proximately Normally distributed, regardless of the distribution of the 
population from which the samples are drawn The closeness to the 
Normal Distribution improves as N (the number of samples) increases. 

As an example, consider the distribution of numbers from 1 to 100. 
This is what is known as a uniform distribution: all elements (numbers 
in this case) occur only once. The number 82 occurs once and only once, 
as does 19, and so on. Suppose now that we take a sample of five ele-
ments and we take the average of these five sampled elements (we can 
just as well take their sums). Now, we replace those five elements back 
into the population, and we take another sample and calculate the sam-
ple mean. If we keep on repeating this process, we will see that the sam-
ple means are Normally distributed, even though the population from 
which they are drawn is uniformly distributed. 

Furthermore, this is true regardless of how the population is distrib-
uted! The Central Limit Theorem allows us to treat the distribution of 
sample means as being Normal without having to know the distribution 
of the population. This is an enormously convenient fact for many areas 
of study. 

If the population itself happens to be Normally distributed, then the 
distribution of sample means will be exactly (not approximately) Nor-
mal. This is true because how quickly the distribution of the sample 
means approaches the Normal, as N increases, is a function of how close 
the population is to Normal. As a general rule of thumb, if a population 
has a unimodal distribution-any type of distribution where there is a 
concentration of frequency around a single mode, and diminishing fre-
quencies on either side of the mode (i.e., it is convex)-or is uniformly 
distributed, using a value of 20 for N is considered sufficient, and a 
value of 10 for N is considered probably sufficient. However, if the 

population is distributed according to the Exponential Distribution (Fig-
ure 3-6), then it may be necessary to use an N of 100 or so. 

Exponential

Normal

Even the means of samples taken 
from the exponential will tend to be 

normally distributed

 
Figure 3-6 The Exponential Distribution and the Normal. 

The Central Limit Theorem, this amazingly simple and beautiful 
fact, validates the importance of the Normal Distribution. 

WORKING WITH THE NORMAL DISTRIBUTION 
In using the Normal Distribution, we most frequently want to find 

the percentage of area under the curve at a given point along the curve. 
In the parlance of calculus this would be called the integral of the func-
tion for the curve itself. Likewise, we could call the function for the 
curve itself the derivative of the function for the area under the curve. 
Derivatives are often noted with a prime after the variable for the func-
tion. Therefore, if we have a function, N(X), that represents the percent-
age of area under the curve at a given point, X, we can say that the de-
rivative of this function, N'(X) (called N prime of X), is the function for 
the curve itself at point X. 

We will begin with the formula for the curve itself, N'(X). This 
function is represented as: 
(3.14) N'(X) = 1/(S*(2*3.1415926536)^(1/2))*EXP(-((X-
U)^2)/(2*S^2)) 

where  
U = The mean of the data. 
S = The standard deviation of the data. 
X = The observed data point. 
EXP() = The exponential function. 
This formula will give us the Y axis value, or the height of the curve 

if you Will, at any given X axis value. 
Often it is easier to refer to a point along the curve with reference to 

its X coordinate in terms of how many standard deviations it is away 
from the mean. Thus, a data point that was one standard deviation away 
from the mean would be said to be one standard unit from the mean. 

Further, it is often easier to subtract the mean from all of the data 
points, which has the effect of shifting the distribution so that it is cen-
tered over zero rather than over the mean. Therefore, a data point that 
was one standard deviation to the right of the mean would now have a 
value of 1 on the X axis. 

When we make these conversions, subtracting the mean from the 
data points, then dividing the difference by the standard deviation of the 
data points, we are converting the distribution to what is called the stan-
dardized normal, which is the Normal Distribution with mean = 0 and 
variance = 1. Now, N'(Z) will give us the Y axis value (the height of the 
curve) for any value of Z: 
(3.15a) N'(Z) = l/((2*3.1415926536)^(1/2))*EXP(-(Z^2/2)) = 
.398942*EXP(-(Z^2/2)) 

where 
(3.16) Z = (X-U)/S 

and U = The mean of the data. 
S = The standard deviation of the data. 
X = The observed data point. 
EXP() = The exponential function. 
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Equation (3.16) gives us the number of standard units that the data 
point corresponds to-in other words, how many standard deviations 
away from the mean the data point is. When Equation (3.16) equals 1, it 
is called the standard normal deviate. A standard deviation or a stan-
dard unit is sometimes referred to as a sigma. Thus, when someone 
speaks of an event being a "five sigma event," they are referring to an 
event whose probability of occurrence is the probability of being beyond 
five standard deviations. 
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Figure 3-7 The Normal Probability density function. 

Consider Figure 3-7, which shows this equation for the Normal 
curve. Notice that the height of the standard Normal curve is .39894. 
From Equation (3.15a), the height is: 
(3.15a) N'(Z) = .398942*EXP(-(Z^2/2)) 
N'(0) = .398942*EXP(-(0^2/2)) 
N'(0) = .398942 

Notice that the curve is continuous-that is, there are no "breaks" in 
the curve as it runs from minus infinity on the left to positive infinity on 
the right. Notice also that the curve is symmetrical, the side to the right 
of the peak being the mirror image of the side to the left of the peak. 

Suppose we had a group of data where the mean of the data was 11 
and the standard deviation of the group of data was 20. To see where a 
data point in that set would be located on the curve, we could first calcu-
late it as a standard unit. Suppose the data point in question had a value 
of -9. To calculate how many standard units this is we first must subtract 
the mean from this data point: 
-9 -11 = -20 

Next we need to divide the result by the standard deviation: 
-20/20 = -1 

We can therefore say that the number of standard units is -1, when 
the data point equals -9, and the mean is 11, and the standard deviation 
is 20. In other words, we are one standard deviation away from the peak 
of the curve, the mean, and since this value is negative we know that it 
means we are one standard deviation to the left of the peak. To see 
where this places us on the curve itself (i.e., how high the curve is at one 
standard deviation left of center, or what the Y axis value of the curve is 
for a corresponding X axis value of -1), we need to now plug this into 
Equation (3.15a): 
(3.15a) N'(Z) = .398942*EXP(-(Z^2/2))  
= .398942*2.7182818285^(-(-1^2/2))  
= .398942*2.7182818285^(-1/2)  
= .398942*.6065307  
= .2419705705 

Thus we can say that the height of the curve at X = -1 is 
.2419705705. The function N'(Z) is also often expressed as: 
(3.15b) N'(Z) = EXP(-(Z^2/2))/((8*ATN(1))^(1/2)  
= EXP(-(Z^2/2))/((8*.7853983)^(1/2) 
= EXP(-(Z^2/2))/2.506629 

where 
(3.16) Z = (X-U)/S 

and 
ATN() = The arctangent function. 
U = The mean of the data. 

S = The standard deviation of the data. 
X = The observed data point. 
EXP() = The exponential function. 
Nonstatisticians often find the concept of the standard deviation (or 

its square, variance) hard to envision. A remedy for this is to use what is 
known as the mean absolute deviation and convert it to and from the 
standard deviation in these equations. The mean absolute deviation is 
exactly what its name implies. The mean of the data is subtracted from 
each data point. The absolute values of each of these differences are 
then summed, and this sum is divided by the number of data points. 
What you end up with is the average distance each data point is away 
from the mean. The conversion for mean absolute deviation and stan-
dard deviation are given now: 
(3.17) Mean Absolute Deviation = S*((2/3.1415926536)^(1/2)) = 
S*.7978845609 

where 
M = The mean absolute deviation. 
S = The standard deviation. 
Thus we can say that in the Normal Distribution, the mean absolute 

deviation equals the standard deviation times .7979. Likewise: 
(3.18) S = M*1/.7978845609 = M*1.253314137 

where 
S = The standard deviation. 
M = The mean absolute deviation. 
So we can also say that in the Normal Distribution the standard de-

viation equals the mean absolute deviation times 1.2533. Since the vari-
ance is always the standard deviation squared (and standard deviation is 
always the square root of variance), we can make the conversion be-
tween variance and mean absolute deviation. 
(3.19) M = V^(1/2)*((2/3.1415926536)^(1/2)) = V^(l/2)*.7978845609 

where 
M = The mean absolute deviation. 
V = The variance. 

(3.20) V = (M*1.253314137)^2 
where 
V = The variance. 
M = The mean absolute deviation. 
Since the standard deviation in the standard normal curve equals 1, 

we can state that the mean absolute deviation in the standard normal 
curve equals .7979. 

Further, in a bell-shaped curve like the Normal, the semi-
interquartile range equals approximately two-thirds of the standard de-
viation, and therefore the standard deviation equals about 1.5 times the 
semi-interquartile range. This is true of most bell-shaped distributions, 
not just the Normal, as are the conversions given for the mean absolute 
deviation and standard deviation. 

NORMAL PROBABILITIES 
We now know how to convert our raw data to standard units and 

how to form the curve N'(Z) itself (i.e., how to find the height of the 
curve, or Y coordinate for a given standard unit) as well as N'(X) (Equa-
tion (3.14), the curve itself without first converting to standard units). 
To really use the Normal Probability Distribution though, we want to 
know what the probabilities of a certain outcome happening arc. This is 
not given by the height of the curve. Rather, the probabilities correspond 
to the area under the curve. These areas are given by the integral of this 
N'(Z) function which we have thus far studied. We will now concern 
ourselves with N(Z), the integral . to N'(Z), to find the areas under the 
curve (the probabilities).1 
(3.21) N(Z) = 1 -N'(Z)*((1.330274429*Y ^ 5)-
(1.821255978*Y^4)+(1.781477937*Y^3)-
(.356563782*Y^2)+(.31938153*Y)) 
If Z<0 then N(Z) = 1-N(Z) 
(3.15a) N'(Z) = .398942*EXP(-(Z^2/2)) 

                                                                 
1 The actual integral to the Normal probability density does not exist in closed 
form, but it can very closely be approximated by Equation (3.21). 
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where 
Y = 1/(1+2316419*ABS(Z)) 

and 
ABS() = The absolute value function. 
EXP() = The exponential function. 
We will always convert our data to standard units when finding 

probabilities under the curve. That is, we will not describe an N(X) 
function, but rather we will use the N(Z) function where: 
(3.16) Z = (X-U)/S 

and U = The mean of the data. 
S = The standard deviation of the data. 
X = The observed data point. 
Refer now to Equation (3.21). Suppose we want to know what the 

probability is of an event not exceeding +2 standard units (Z = +2). 
Y = 1/(1+2316419*ABS(+2))  
= 1/1.4632838  
= .68339443311 
(3.15a) N'(Z) = .398942*EXP(-(+2^2/2))  
= .398942*EXP(-2)  
= .398942*.1353353  
= .05399093525 

Notice that this tells us the height of the curve at +2 standard units. 
Plugging these values for Y and N'(Z) into Equation (3.21) we can ob-
tain the probability of an event not exceeding +2 standard units: 
N(Z) = 1-N'(Z)*((1.330274429*Y^5)-
(1.821255978*Y^4)+(1.781477937*Y^3)-
(.356563782*Y^2)+(.31938153*Y)) 
= 1-.05399093525*((1.330274429*.68339443311^5)-
(1.821255978*.68339443311^4+1.781477937*.68339443311^3)-
(.356563782*.68339443311^2)+(.31938153*.68339443311)) 
= 1-.05399093525*((1.330274429*.1490587)-
(1.821255978*.2181151+(1.781477937*.3191643)-(-
356563782*.467028+.31938153*.68339443311)) 
= 1-.05399093525*(.198288977-.3972434298+.5685841587-
.16652527+.2182635596) 
= 1-.05399093525*.4213679955 
= 1-.02275005216 
= .9772499478 

Thus we can say that we can expect 97.72% of the outcomes in a 
Normally distributed random process to fall shy of +2 standard units. 
This is depicted in Figure 3-8. 
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Figure 3-8 Equation (3.21) showing probability with Z = +2. 

If we wanted to know what the probabilities were for an event 
equaling or exceeding a prescribed number of standard units (in this 
case +2), we would simply amend Equation (3.21), taking out the 1- in 
the beginning of the equation and doing away with the -Z provision (i.e., 
doing away with "If Z < 0 then N(Z) = 1-N(Z)"). Therefore, the second 
to last line in the last computation would be changed from 
 = 1-.02275005216 

to simply 
.02275005216 

We would therefore say that there is about a 2.275% chance that an 
event in a Normally distributed random process would equal or exceed 
+2 standard units. This is shown in Figure 3-9. 
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Figure 3-9 Doing away with the 1- and -Z provision in Equation (3.21). 

Thus far we have looked at areas under the curve (probabilities) 
where we are only dealing with what are known as "1-tailed" probabili-
ties. That is to say we have thus far looked to solve such questions as, 
"What are the probabilities of an event being less (more) than such-and-
such standard units from the mean?" Suppose now we were to pose the 
question as, “What are the probabilities of an event being within so 
many standard units of the mean?" In other words, we wish to find out 
what the "e-tailed" probabilities are. 
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Figure 3-10 A two-tailed probability of an event being+or-2 sigma. 

Consider Figure 3-10. This represents the probabilities of being 
within 2 standard units of the mean. Unlike Figure 3-8, this probability 
computation does not include the extreme left tail area, the area of less 
than -2 standard units. To calculate the probability of being within Z 
standard units of the mean, you must first calculate the I-tailed probabil-
ity of the absolute value of Z with Equation (3.21). This will be your 
input to the next Equation, (3.22), which gives us the 2-tailed probabili-
ties (i.e., the probabilities of being within ABS(Z) standard units of the 
mean): 
(3.22) e-tailed probability = 1-((1-N(ABS(Z)))*2) 

If we are considering what our probabilities of occurrence within 2 
standard deviations are (Z = 2), then from Equation (3.21) we know that 
N(2) = .9772499478, and using this as input to Equation (3.22): 
2-tailed probability = 1-((1-.9772499478)*2) = 1-(.02275005216* 2) = 
1-.04550010432 = .9544998957 

Thus we can state from this equation that the probability of an event 
in a Normally distributed random process falling within 2 standard units 
of the mean is about 95.45%. 
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Figure 3-11 Two-tailed probability of an event being beyond 2 sigma. 

Just as with Equation (3.21), we can eliminate the leading 1- in 
Equation (3.22) to obtain (1-N(ABS(Z)))*2, which represents the prob-
abilities of an event falling outside of ABS(Z) standard units of the 
mean. This is depicted in Figure 3-11. For the example where Z = 2, we 
can state that the probabilities of an event in a Normally distributed 
random process falling outside of 2 standard units is: 
2 tailed probability (outside) = (1-.9772499478)*2 = .02275005216*2 = 
.04550010432 

Finally, we come to the case where we want to find what the prob-
abilities (areas under the N'(Z) curve) are for two different values of Z. 

0

0.1

0.2

0.3

0.4

0.5

-3 -2 -1 0 1 2 3
<-- Z -->

N'(Z)

 
Figure 3-12 The area between -1 and +2 standard units. 

Suppose we want to find the area under the N'(Z) curve between -1 
standard unit and +2 standard units. There are a couple of ways to ac-
complish this. To begin with, we can compute the probability of not 
exceeding +2 standard units with Equation (3.21), and from this we can 
subtract the probability of not exceeding -1 standard units (see Figure 3-
12). This would give us: 
.9772499478-.1586552595 = .8185946883 

Another way we could have performed this is to take the number 1, 
representing the entire area under the curve, and then subtract the sum of 
the probability of not exceeding -1 standard unit and the probability of 
exceeding 2 standard units: 
 = 1-(.022750052+.1586552595) = 1 .1814053117 = .8185946883 

With the basic mathematical tools regarding the Normal Distribu-
tion thus far covered in this chapter, you can now use your powers of 
reasoning to figure any probabilities of occurrence for Normally distrib-
uted random variables. 

FURTHER DERIVATIVES OF THE NORMAL 
Sometimes you may want to know the second derivative of the N(Z) 

function. Since the N(Z) function gives us the area under the curve at Z, 
and the N'(Z) function gives us the height of the curve itself at Z, then 
the N"(Z) function gives us the instantaneous slope of the curve at a 
given Z: 
(3.23) N"(Z) = -Z/2.506628274*EXP(-(Z^2/2) 

where 
EXP() = The exponential function. 
To determine what the slope of the N'(Z) curve is at +2 standard 

units: 
N"(Z) = -2/2.506628274*EXP(-(+2^2)/2) 

= -212.506628274*EXP(-2) 
= -2/2.506628274*.1353353 
= -.1079968336 

Therefore, we can state that the instantaneous rate of change in the 
N'(Z) function when Z = +2 is -.1079968336. This represents rise/run, 
so we can say that when Z = +2, the N'(Z) curve is rising -.1079968336 
for ever) 1 unit run in Z. This is depicted in Figure 3-13. 
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Figure 3-13 N"(Z) giving the slope of the line tangent tangent to N'(Z) 
at Z = +2. 

For the reader's own reference, further derivatives are now given. 
These will not be needed throughout the remainder of this text, but arc 
provided for the sake of completeness: 
(3.24) N'"(Z) = (Z^2-1)/2.506628274*EXP(-(Z^2)/2) 
(3.25) N""(Z) = ((3*Z)-Z^3)/2.506628274*EXP(-(Z^2)/2) 
(3.26) N'""(Z) = (Z^4-(6*Z^2)+3)/2.506628274*EXP(-(Z^2)/2) 

As a final note regarding the Normal Distribution, you should be 
aware that the distribution is nowhere near as “peaked” as the graphic 
examples presented in this chapter imply. The real shape of the Normal 
Distribution is depicted in Figure 3-14. 
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Figure 3-14 The real shape of the Normal Distribution. 

Notice that here the scales of the two axes are the same, whereas in 
the other graphic examples they differ so as to exaggerate the shape of 
the distribution. 

THE LOGNORMAL DISTRIBUTION 
Many of the real-world applications in trading require a small but 

crucial modification to the Normal Distribution. This modification takes 
the Normal, and changes it to what is known as the Lognormal Distribu-
tion. 

Consider that the price of any freely traded item has zero as a lower 
limit.2 Therefore, as the price of an item drops and approaches zero, it 
should in theory become progressively more difficult for the item to get 
lower. For example, consider the price of a hypothetical stock at $10 per 
share. If the stock were to drop $5, to $5 per share, a 50% loss, then 
according to the Normal Distribution it could just as easily drop from $5 
to $0. However, under the Lognormal, a similar drop of 50% from a 
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price of $5 per share to $2.50 per share would be about as probable as a 
drop from $10 to $5 per share. 

The Lognormal Distribution, Figure 3-15, works exactly like the 
Normal Distribution except that with the Lognormal we are dealing with 
percentage changes rather than absolute changes. 

Normal

Lognormal

 
Figure 3-15 The Normal and Lognormal distributions. 

Consider now the upside. According to the Lognormal, a move from 
$10 per share to $20 per share is about as likely as a move from $5 to 
$10 per share, as both moves represent a 100% gain. 

That isn't to say that we won't be using the Normal Distribution. The 
purpose here is to introduce you to the Lognormal, show you its rela-
tionship to the Normal (the Lognormal uses percentage price changes 
rather than absolute price changes), and point out that it usually is used 
when talking about price moves, or anytime that the Normal would ap-
ply but be bounded on the low end at zero.2 

To use the Lognormal distribution, you simply convert the data you 
are working with to natural logarithms.3 Now the converted data will be 
Normally distributed if the raw data was Lognormally distributed. 

For instance, if we are discussing the distribution of price changes 
as 

being Lognormal, we can use the Normal distribution on it. First, 
we must divide each closing price by the previous closing price. Sup-
pose in this instance we are looking at the distribution of monthly clos-
ing prices (we could use any time period-hourly, daily, yearly, or what-
ever). Suppose we now see $10, $5, $10, $10, then $20 per share as our 
first five months closing prices. This would then equate to a loss of 50% 
going into the second month, a gain of 100% going into the third month, 
a gain of 0% going into the fourth month, and another gain of 100% into 
the fifth month. Respectively then, we have quotients of .5, 2, 1, and 2 
for the monthly price changes of months 2 through 5. These are the 
same as HPRs from one month to the next in succession. We must now 
convert to natural logarithms in order to study their distribution under 
the math for the Normal Distribution. Thus, the natural log of .5 is -
.6931473, of 2 it is .6931471, and of 1 it is 0. We are now able to apply 
the mathematics pertaining to the Normal distribution to this converted 
data. 

                                                                 
2 This idea that the lowest an item can trade for is zero is not always entirely true. 
For instance. during tile stock market crash of 1929 and the ensuing bear market, 
the shareholders of many failed banks were held liable to the depositors in those 
banks. Persons who owned stock in such banks not only lost their full investment, 
they also realized liability beyond the amount of their investment. The point here 
isn't to say that such an event can or cannot happen again. Rather, we cannot 
always say that zero is the absolute low end of what a freely traded item can be 
priced at, although it usually is. 
3 The distinction between common and natural logarithms is reiterated here. A 
common log is a log base 10, while a natural log is a log base e, where e = 
2.7182818285. The common log of X is referred to mathematically as log(X) 
while the natural log is referred to as ln(X). The distinction gets blurred when we 
observe BASIC programming code, which often utilizes a function LOG(X) to 
return the natural log. This is diametrically opposed to mathematical convention. 
BASIC does not have a provision For common logs, but the natural log can be 
converted to the common log by multiplying the natural log by .4342917. like-
wise, we CM convert common logs to natural logs by multiplying the common 
log by 2.3026. 

THE PARAMETRIC OPTIMAL F 
Now that we have studied the mathematics of the Normal and Log-

normal distributions, we will see how to determine an optimal f based 
on outcomes that are Normally distributed. 

The Kelly formula is an example of a parametric optimal f in that 
the optimal f returned is a function of two parameters. In the Kelly for-
mula the input parameters are the percentage of winning bets and the 
payoff ratio. However, the Kelly formula only gives you the optimal f 
when the possible outcomes have a Bernoulli distribution. In other 
words, the Kelly formula will only give the correct optimal f when there 
are only two possible outcomes. When the outcomes do not have a Ber-
noulli distribution, such as Normally distributed outcomes (which we 
arc about to study), the Kelly formula will not give you the correct op-
timal f.4 

When they are applicable, parametric techniques are far more pow-
erful than their empirical counterparts. Assume we have a situation that 
can be described completely by the Bernoulli distribution. We can de-
rive our optimal f here by way of either the Kelly formula or the empiri-
cal technique detailed in Portfolio Management Formulas. Suppose in 
this instance we win 60% of the time. Say we are tossing a coin that is 
biased, that we know that in the long run 60% of the tosses will be 
heads. We are therefore going to bet that each toss will be heads, and the 
payoff is 1:1. The Kelly formula would tell us to bet a fraction of .2 of 
our stake on the next bet. Further suppose that of the last 20 tosses, 11 
were heads and 9 were tails. If we were to use these last 20 trades as the 
input into the empirical techniques, the result would be that we should 
risk .1 of our stake on the next bet. 

Which is correct, the .2 returned by the parametric technique (the 
Kelly formula in this Bernoulli distributed case) or the .1 returned em-
pirically by the last 20 tosses? The correct answer is .2, the answer re-
turned from the parametric technique. The reason is that the next toss 
has a 60% probability of being heads, not a 55% probability as the last 
20 tosses would indicate. Although we are only discussing a 5% prob-
ability difference, 1 toss in 20, the effect on how much we should bet is 
dramatic. Generally, the parametric techniques are inherently more ac-
curate in this regard than are their empirical counterparts (provided we 
know the distribution of the outcomes). This is the first advantage of the 
parametric to the empirical. This is also a critical proviso-that we must 
know what the distribution of outcomes is in the long run in order to use 
the parametric techniques. This is the biggest drawback to using the 
parametric techniques. 

The second advantage is that the empirical technique requires a past 
history of outcomes whereas the parametric does not. Further, this past 
history needs to be rather extensive. In the example just cited, we can 
assume that if we had a history of 50 tosses we would have arrived at an 
empirical optimal f closer to .2. With a history of 1,000 tosses, it would 
be even closer according to the law of averages. 

The fact that the empirical techniques require a rather lengthy 
stream of past data has almost restricted them to mechanical trading 
systems. Someone trading anything other than a mechanical trading 
system, be it by Elliott Wave or fundamentals, has almost been shut out 
from using the optimal f technique. With the parametric techniques this 
is no longer true. Someone who wishes to blindly follow some market 
guru, for instance, now has a way to employ the power of optimal f. 
Therein lies the third advantage of the parametric technique over the 
empirical-it can be used by any trader in any market. 

There is a big assumption here, however, for someone not employ-
ing a mechanical trading system. The assumption is that the future dis-
tribution of profits and losses will resemble the distribution in the past 
(which is what we figure the optimal f on). This may be less likely than 
with a mechanical system. 

This also sheds new light on the expected performance of any tech-
nique that is not purely mechanical. Even the best practitioners of such 
techniques, be it by fundamentals, Gann, Elliott Wave, and so on, are 
doomed to fail if they are too far beyond the peak of (to the right of) the 
f curve. If they are too far to the left of the peak, they are going to end 

                                                                 
4 We are speaking of the Kelly formulas here in a singular sense even though 
there are, in fact, two different Kelly formulas, one for when the payoff ration is 
1:1, and the other for when the payoff is any ratio. In the examples of Kelly in 
this discussion we are assuming a payoff of 1:1, hence it doesn't matter which of 
the two Kelly formulas we are using. 
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up with geometrically lower profits than their expertise in their area 
should have made for them. Furthermore, practitioners of techniques 
that are not purely mechanical must realize that everything said about 
optimal f and the purely mechanical techniques applies. This should be 
considered when contemplating expected drawdowns of such tech-
niques. Remember that the drawdowns Will be substantial, and this fact 
does not mean that the technique should be abandoned. 

The fourth and perhaps the biggest advantage of the parametric over 
the empirical method of determining optimal f, is that the parametric 
method allows you to do 'What if' types of modeling. For example, sup-
pose you are trading a market system that has been running very hot. 
You want to be prepared for when that market system stops performing 
so well, as you know it Inevitably will. With the parametric techniques, 
you can vary your input parameters to reflect this and thereby put your-
self at what the optimal f will be when the market system cools down to 
the state that the parameters you Input reflect. The parametric tech-
niques are therefore far more powerful than the empirical ones. 

So why use the empirical techniques at all? The empirical tech-
niques are more intuitively obvious than the parametric ones are. Hence, 
the empirical techniques are what one should learn first before moving 
on to the parametric. We have now covered the empirical techniques in 
detail and are therefore prepared to study the parametric techniques. 

THE DISTRIBUTION OF TRADE P&L'S 
Consider the following sequence of 232 trade profits and losses in 

points. It doesn't matter what the commodity is or what system gener-
ated this stream-it could be any system on any market. 
Trade# P&L Trade# P&L Trade# P&L Trade# P&L 
1. 0.18 42. -1.58 83. -4.13 124. -2.63 
2. -1.11 43. -0.5 84. -1.63 125. -0.73 
3. 0.42 44. 0.17 85. -1.23 126. -1.83 
4. -0.83 45. 0.17 86. 1.62 127. 0.32 
5. 1.42 46. -0.65 87. 0.27 128. 1.62 
6. 0.42 47. 0.96 88. 1.97 130. 1.02 
1. -0.99 48. -0.88 89. -1.72 131. -0.81 
8. 0.87 49. 0.17 90. 1.47 132. -0.74 
9. 0.92 50. -1.53 91. -1.88 133. 1.09 
10. -0.4 51. 0.15 92. 1.72 134. -1.13 
11. -1.48 52. -0.93 93. 1.02 135. 0.52 
12. 1.87 53. 0.42 94. 0.67 136. 0.18 
13. 1.37 54. 2.77 95. 0.67 137. 0.18 
14. -1.48 55. 8.52 96. -1.18 138. 1.47 
15. -0.21 56. 2.47 97. 3.22 139. -1.07 
16. 1.82 57. -2.08 98. -4.83 140. -0.98 
17. 0.15 58. -1.88 99. 8.42 141. 1.07 
18. 0.32 59. -1.88 100. -1.58 142. -0.88 
19. -1.18 60. 1.67 101. -1.88 143. -0.51 
20. -0.43 61. -1.88 102. 1.23 144. 0.57 
21. 0.42 62. 3.72 103. 1.72 145. 2.07 
22. 0.57 63. 2.87 104. 1.12 146. 0.55 
23. 4.72 64. 2.17 105. -0.97 147. 0.42 
24. 12.42 65. 1.37 106. -1.88 148. 1.42 
25. 0.15 66. 1.62 107. -1.88 149. 0.97 
26. 0.15 67. 0.17 108. 1.27 150. 0.62 
27. -1.14 68. 0.62 109. 0.16 151. 0.32 
28. 1.12 69. 0.92 110. 1.22 152. 0.67 
29. -1.88 70. 0.17 111. -0.99 153. 0.77 
30. 0.17 71. 1.52 112. 1.37 154. 0.67 
31. 0.57 72. -1.78 113. 0.18 155. 0.37 
32. 0.47 73. 0.22 114. 0.18 156. 0.87 
33. -1.88 74. 0.92 115. 2.07 157. 1.32 
34. 0.17 75. 0.32 116. 1.47 158. 0.16 
35. -1.93 76. 0.17 117. 4.87 159. 0.18 
36. 0.92 77. 0.57 118. -1.08 160. 0.52 
37. 1.45 78. 0.17 119. 1.27 161. -2.33 
38. 0.17 79. 1.18 120. 0.62 162. 1.07 
39. 1.87 80. 0.17 121. -1.03 163. 1.32 
40. 0.52 81. 0.72 122. 1.82 164. 1.42 
41. 0.67 82. -3.33 123. 0.42 165. 2.72 
Trade# P&L Trade# P&L Trade# P&L Trade# P&L 
166. 1.37 183. 0.24 200. -0.98 217. -1.08 
167. -1.93 184. 0.57 201. 0.17 218. 0.25 
168. 2.12 185. 0.35 202. -0.96 219. 0.14 
169. 0.62 186. 1.57 203. 0.35 220. 0.79 
170. 0.57 187. -1.73 204. 0.52 221. -0.55 

Trade# P&L Trade# P&L Trade# P&L Trade# P&L 
171. 0.42 188. -0.83 205. 0.77 222. 0.32 
172. 1.58 189. -1.18 206. 1.10 223. -1.30 
173. 0.17 190. -0.65 207. -1.88 224. 0.37 
174. 0.62 191. -0.78 208. 0.35 225. -0.51 
175. 0.77 192. -1.28 209. 0.92 226. 0.34 
176. 0.37 193. 0.32 210. 1.55 227. -1.28 
177. -1.33 194. 1.24 211. 1.17 228. 1.80 
178. -1.18 195. 2.05 212. 0.67 229. 2.12 
179. 0.97 196. 0.75 213. 0.82 230. 0.77 
180. 0.70 197. 0.17 214. -0.98 231. -1.33 
181. 1.64 198. 0.67 215. -0.85 232. 1.52 
182. 0.57 199. -0.56 216. 0.22   

If we wanted to determine an equalized parametric optimal f we 
would now convert these trade profits and losses to percentage gains and 
losses [based on Equations (2.10a) through (2.10c)]. Next, we would 
convert these percentage profits and losses by multiplying them by the 
current price of the underlying instrument. For example, P&L #1 is .18. 
Suppose that the entry price to this trade was 100.50. Thus, the percent-
age gain on this trade would be .18/100.50 = .001791044776. Now sup-
pose that the current price of this underlying instrument is 112.00. Mul-
tiplying .001791044776 by 112.00 translates into an equalized P&L of 
.2005970149, If we were seeking to do this procedure on an equalized 
basis, we would perform this operation on all 232 trade profits and 
losses. 

Whether or not we are going to perform our calculations on an 
equalized basis (in this chapter we will not operate on an equalized ba-
sis), we must now calculate the mean (arithmetic) and population stan-
dard deviation of these 232 individual trade profits and losses as 
.330129 and 1.743232 respectively (again, if we were doing things on 
an equalized basis, we would need to determine the mean and standard 
deviation on the equalized trade P&L's). With these two numbers we 
can use Equation (3.16) to translate each individual trade profit and loss 
into standard units. 
(3.16) Z = (X-U)/S 

where 
U = The mean of the data. 
S = The standard deviation of the data. 
X = The observed data point. 
Thus, to translate trade #1, a profit of .18, to standard units: 

Z = (.18-.330129)/1.743232 = -.150129/1.743232 = -.08612106708 
Likewise, the next three trades of -1.11, .42, and -.83 translate into -

.8261258398, .05155423948, and -.6655046488 standard units respec-
tively. 

If we are using equalized data, we simply standardize by subtracting 
the mean of the data and dividing by the data's standard deviation. 

Once we have converted all of our individual trade profits and 
losses over to standard units, we can bin the now standardized data. 
Recall that with binning there is a loss of information content about a 
particular distribution (in this case the distribution of the individual 
trades) but the character of the distribution remains unchanged. 

Suppose we were to now take these 232 individual trades and place 
them into 10 bins. We are choosing arbitrarily here-we could have cho-
sen 9 bins or 50 bins. In fact, one of the big arguments about binning 
data is that most frequently there is considerable arbitrariness as to how 
the bins should be chosen. 

Whenever we bin something, we must decide on the ranges of the 
bins. We will therefore select a range of -2 to +2 sigmas, or standard 
deviations. This means we will have 10 equally spaced bins between -2 
standard units to +2 standard units. Since there are 4 standard units in 
total between -2 and +2 standard units and we are dividing this space 
into 10 equal regions, we have 4/10 = -4 standard units as the size or 
"width" of each bin. Therefore, our first bin, the one "farthest to the 
left," will contain those trades that were within -2 to -1.6 standard units, 
the next one trades from -1.6 to -1.2, then -1.2 to -.8, and so on, until our 
final bin contains those trades that were 1.6 to 2 standard units. Those 
trades that are less than -2 standard units or greater than +2 standard 
units will not be binned in this exercise, and we will ignore them. If we 
so desired, we could have included them in the extreme bins, placing 
those data points less than -2 in the -2 to -1.6 bin, and likewise for those 
data points greater than 2. Of course, we could have chosen a wider 
range for binning, but since these trades are beyond the range of our 
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bins, we have chosen not to include them. In other words, we are elimi-
nating from this exercise those trades with P&L's less than .330129-
(1.743232*2) = -3.156335 or greater than .330129+(1.743232*2) = 
3.816593. 

What we have created now is a distribution of this system's trade 
P&L's. Our distribution contains 10 data points because we chose to 
work with 10 

Normal distribution

232 actual trades

 
Figure 3-16 232 individual trades in 10 bins from -2 to +2 sigma versus 
the Normal Distribution. 

bins. Each data point represents the number of trades that fell into 
that bin. Each trade could not fall into more than 1 bin, and if the trade 
was beyond 2 standard units either side of the mean (P&L's<-3.156335 
or >3.816593), then it is not represented in this distribution. Figure 3-16 
shows this distribution as we have just calculated it. 

"Wait a minute," you say. "Shouldn't the distribution of a trading 
system's P&L's be skewed to the right because we are probably going to 
have a few large profits?" 

This particular distribution of 232 trade P&L's happens to be from a 
system that very often takes small profits via a target. Many people have 
the mistaken impression that P&L distributions are going to be skewed 
to the right for all trading systems. This is not at all true, as Figure 3-16 
attests. Different market systems will have different distributions, and 
you shouldn't expect them all to be the same. 

Also in Figure 3-16, superimposed over the distribution we have 
just put together, is the Normal Distribution as it would look for 232 
trade P&L's if they were Normally distributed. This was done so that 
you can compare, graphically, the trade P&L's as we have just calcu-
lated them to the Normal. The Normal Distribution here is calculated by 
first taking the boundaries of each bin. For the leftmost bin in our exam-
ple this would be Z = -2 and Z = -1.6. Now we run these Z values 
through Equation (3.21) to convert these boundaries to a cumulative 
probability. In our example, this corresponds to .02275 for Z = -2 and 
.05479932 for Z = -1.6. Next, we take the absolute value of the differ-
ence between these two values, which gives us ABS(.02275-.05479932) 
= .03204932 for our example. Last, we multiply this answer by the 
number of data points, which in this case is 232 because there are 232 
total trades (we still must use 232 even though some have been elimi-
nated because they were beyond the range of our bins). Therefore, we 
can state that if the data were Normally distributed and placed into 10 
bins of equal width between -2 and +2 sigmas, then the leftmost bin 
would contain .03204932*232 = 7.43544224 elements. If we were to 
calculate this for each of the 10 bins, we would calculate the Normal 
curve superimposed in Figure 3-16. 

FINDING OPTIMAL F ON THE NORMAL DISTRIBUTION 
Now we can construct a technique for finding the optimal f on 

Normally distributed data. Like the Kelly formula, this will be a para-
metric technique. However, this technique is far more powerful than the 
Kelly formula, because the Kelly formula allows for only two possible 
outcomes for an event whereas this technique allows for the full spec-
trum of the outcomes (provided that the outcomes are Normally distrib-
uted). The beauty of Normally distributed outcomes (aside from the fact 
that they so frequently occur, since they are the limit of many other 
distributions) is that they can be described by 2 parameters. The Kelly 
formulas will give you the optimal f for Bernoulli distributed outcomes 
by inputting the 2 parameters of the payoff ratio and the probability of 

winning. The technique about to be described likewise only needs two 
parameters as input, the average and the standard deviation of the out-
comes, to return the optimal f. 

Recall that the Normal Distribution is a continuous distribution, In 
order to use this technique we need to make this distribution be discrete. 
Further recall that the Normal Distribution is unbounded. That is, the 
distribution runs from minus infinity on the left to plus infinity on the 
right. 

Therefore, the first two steps that we must take to find the optimal f 
on Normally distributed data is that we must determine (1) at how many 
sigmas from the mean of the distribution we truncate the distribution, 
and (2) into how many equally spaced data points will we divide the 
range between the two extremes determined in (1). 

For instance, we know that 99.73% of all the data points will fall be-
tween plus and minus 3 sigmas of the mean, so we might decide to use 3 
sigmas as our parameter for (1). In other words, we are deciding to con-
sider the Normal Distribution only between minus 3 sigmas and plus 3 
sigmas of the mean. In so doing, we will encompass 99.73% of all of the 
activity under the Normal Distribution. Generally we will want to use a 
value of 3 to 5 sigmas for this parameter. 

Regarding step (2), the number of equally spaced data points, we 
will generally want to use a bare minimum of ten times the number of 
sigmas we are using in (1). If we select 3 sigmas for (1), then we should 
select at least 30 equally spaced data points for (2). This means that we 
are going to take the horizontal axis of the Normal Distribution, of 
which we are using the area from minus 3 sigmas to plus 3 sigmas from 
the mean, and divide that into 30 equally spaced points. Since there are 
6 sigmas between minus 3 sigmas and plus 3 sigmas, and we want to 
divide this into 30 equally spaced points, we must divide 6 by 30-1, or 
29. This gives us .2068965517. So, our first data point will be minus 3, 
and we will add .2068965517 to each previous point until we reach plus 
3, at which point we will have created 30 equally spaced data points 
between minus 3 and plus 3. Therefore, our second data point will be -
3+.2068965517 = -2.793103448, our third data point 
2.79310344+.2068965517 = -2.586206896, and so on. In so doing, we 
will have determined the 30 horizontal input coordinates to this system. 

The more data points you decide on, the better will be the resolution 
of the Normal curve. Using ten times the number of sigmas is a rough 
rule for determining the bare minimum number of data points you 
should use. Recall that the Normal distribution is a continuous distribu-
tion. However, we must make it discrete in order to find the optimal f on 
it. The greater the number of equally spaced data points we use, the 
closer our discrete model will be to the actual continuous distribution 
itself, with the limit of the number of equally spaced data points ap-
proaching infinity where the discrete model approaches the continuous 
exactly. 

Why not use an extremely large number of data points? The more 
data points you use in the Normal curve, the more calculations will be 
required to find the optimal f on it. Even though you will usually be 
using a computer to solve for the optimal f, it will still be slower the 
more data points you use. Further, each data point added resolves the 
curve further to a lesser degree than the previous data point did. We will 
refer to these first two input parameters as the bounding parameters. 

Now, the third and fourth steps are to determine the arithmetic aver-
age trade and the population standard deviation for the market system 
we are working on. If you do not have a mechanical system, you can get 
these numbers from your brokerage statements or you can estimate 
them. That is the one of the real benefits of this technique-that you don't 
need to have a mechanical system, you don't even need brokerage 
statements or paper trading results to use this technique. The technique 
can be used by simply estimating these two inputs, the arithmetic mean 
average trade (in points or in dollars) and the population standard devia-
tion of trades (in points or in dollars, so long as it's consistent with what 
you use for the arithmetic mean trade). Be forewarned, though, that your 
results will only be as accurate as your estimates. 

If you are having difficulty estimating your population standard de-
viation, then simply try to estimate by how much, on average, a trade 
will differ from the average trade. By estimating the mean absolute de-
viation in this way, you can use Equation (3.18) to convert your esti-
mated mean absolute deviation into an estimated standard deviation: 
(3.18) S = M*1/.7978845609 = M*1.253314137 
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where 
S = The standard deviation. 
M = The mean absolute deviation. 
We will refer to these two parameters, the arithmetic mean average 

trade and the standard deviation of the trades, as the actual input pa-
rameters. 

Now we want to take all of the equally spaced data points from step 
(2) and find their corresponding price values, based on the arithmetic 
mean and standard deviation. Recall that our equally spaced data points 
are expressed in terms of standard units. Now for each of these equally 
spaced data points we will find the corresponding price as: 
(3.27) D = U+(S*E) 

where 
D = The price value corresponding to a standard unit value. 
E = The standard unit value. 
S = The population standard deviation. 
U = The arithmetic mean. 
Once we have determined all of the price values corresponding to 

each data point we have truly accomplished a great deal. We have now 
constructed the distribution that we expect the future data points to tend 
to. 

However, this technique allows us to do a lot more than that. We 
can incorporate two more parameters that will allow us to perform 
"What if ' types of scenarios about the future. These parameters, which 
we will call' the "What if" parameters, allow us to see the effect of a 
change in our average trade or a change in the dispersion (standard de-
viation) of our trades. 

The first of these parameters, called shrink, affects the average 
trade. Shrink is simply a multiplier on our average trade. Recall that 
when we find the optimal f we also obtain other calculations, which are 
useful by-products of the optimal f. Such calculations include the geo-
metric mean, TWR, and geometric average trade. Shrink is the factor by 
which we will multiply our average trade before we perform the optimal 
f technique on it. Hence, shrink lets us see what the optimal f would be 
if our average trade were affected by shrink as well as how the other by-
product calculations would be affected. 

For example, suppose you are trading a system that has been run-
ning very hot lately. You know from past experience that the system is 
likely to stop performing so well in the future. You would like to see 
what would happen if the average trade were cut in half. By using a 
shrink value of .5 (since shrink is a multiplier, the average trade times .5 
equals the average trade cut in half) you can perform the optimal f tech-
nique to determine what your optimal f should be if the average trade 
were to be cut in half. Further, you can see how such changes affect 
your geometric average trade, and so on. 

By using a shrink value of 2, you can also see the affect that a dou-
bling of your average trade would have. In other words, the shrink pa-
rameter can also be used to increase (unshrink?) your average trade. 
What's more, it lets you take an unprofitable system (that is, a system 
with an average trade less than zero), and, by using a negative value for 
shrink, see what would happen if that system became profitable. For 
example, suppose you have a system that shows an average trade of -
$100. If you use a shrink value of -.5, this will give you your optimal f 
for this distribution as if the average trade were $50, since -100*-.5 = 
50. If we used a shrink factor of -2, we would obtain the distribution 
centered about an average trade of $200. 

You must be careful in using these "What if" parameters, for they 
make it easy to mismanage performance. Mention was just made of how 
you can turn a system with a negative arithmetic average trade into a 
positive one. This can lead to problems if, for instance, in the future, you 
still have a negative expectation. 

The other "What if" parameter is one called stretch. This is not, as 
its name would imply, the opposite of shrink. Rather, stretch is the mul-
tiplier to be used on the standard deviation. You can use this parameter 
to determine  

the effect on f and its by-products by an increase or decrease in the 
dispersion. Also, unlike shrink, stretch must always be a positive num-
ber, whereas shrink can be positive or negative (so long as the average 
trade times shrink is positive). If you want to see what will happen if 
your standard deviation doubles, simply use a value of 2 for stretch. To 

see what Would happen if the dispersion quieted down, use a value less 
than 1. 

You will notice in using this technique that lowering the stretch to-
ward zero will tend to increase the by-product calculations, resulting in 
a more optimistic assessment of the future and vice versa. Shrink works 
in an opposite fashion, as lowering the shrink towards zero will result in 
more pessimistic assessments about the future and vice versa. 

Once we have determined what values we want to use for stretch 
and shrink (and for the time being we will use values of 1 for both, 
which means to leave the actual parameters unaffected) we can amend 
Equation (3.27) to: 
(3.28) D = (U*Shrink)+(S*E*Stretch) 

where 
D = The price value corresponding to a standard unit value. 
E = The standard unit value. 
S = The population standard deviation. 
U = The arithmetic mean. 
To summarize thus far, the first two steps are to determine the 

bounding parameters of the number of sigmas either side of the mean 
we are going to use, as well as how many equally spaced data points we 
are going to use within this range. The next two steps are the actual 
input parameters of the arithmetic average trade and population standard 
deviation. We can derive these parameters empirically by looking at the 
results of a given trading system or by using brokerage statements or 
paper trading results. We can also derive these figures by estimation, but 
remember that the results obtained will only be as accurate as your esti-
mates. The fifth and sixth steps are to determine the factors to use for 
stretch and shrink if you are going to perform a "What if type of sce-
nario. If you are not, simply use values of 1 for both stretch and shrink. 
Once you have completed these six steps, you can now use Equation 
(3.28) to perform the seventh step. The seventh step is to convert the 
equally spaced data points from standard values to an actual amount of 
either points or dollars (depending on whether you used points or dollars 
as input for your arithmetic average trade and population standard de-
viation). 

Now the eighth step is to find the associated probability with each 
of the equally spaced data points. This probability is determined by 
using Equation (3.21): 
(3.21) N(Z) = 1-N'(Z)*((1.330274429*Y^5)-
(1.821255978*Y^4)+(1.781477937*Y^3)-
(.356563782*Y^2)+(.31938153*Y)) 
If Z<0 then N(Z) = 1-N(Z) 

where 
Y = 1/(1+.2316419*ABS(Z)) 

ABS() = The absolute value function. 
N'(Z) = .398942*EXP(-(Z^2/2)) 

EXP() = The exponential function. 
However, we will use Equation (3.21) without its 1-as the first term 

in the equation and without the -Z provision (i.e., without the "If Z<0 
then N(Z)-1-N(Z)"), since we want to know what the probabilities are 
for an event equaling or exceeding a prescribed amount of standard 
units. 

So we go along through each of our equally spaced data points. 
Each point has a standard value, which we will use as the Z parameter in 
Equation (3.21), and a dollar or point amount. Now there will be another 
variable corresponding to each equally spaced data point-the associated 
probability. 

THE MECHANICS OF THE PROCEDURE 
The procedure will now be demonstrated on the trading example in-

troduced earlier in this chapter. Since our 232 trades are currently in 
points, we should convert them to their dollar representations. However, 
since the market is a not specified, we will assign an arbitrary value of 
$1,000 per point. Thus, the average trade of .330129 now becomes 
.330129*$1000, or an average trade of $330.13. Likewise the population 
standard deviation of 1.743232 is also multiplied by $1,000 per point to 
give $1,743.23. 

Now we construct the matrix. First, we must determine the range, in 
sigmas from the mean, that we want our calculations to encompass. For 
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our example we will choose 3 sigmas, so our range will go from minus 3 
sigmas to plus 3 sigmas. Note that you should use the same amount to 
the left of the mean that you use to the right of the mean. That is, if you 
go 3 sigmas to the left (minus 3 sigmas) then you should not go only 2 
or 4 sigmas to the right, but rather you should go 3 sigmas to the right as 
well (i.e., plus 3 sigmas from the mean). 

Next we must determine how many equally spaced data points to 
divide this range into. Choosing 61 as our value gives a data point at 
every tenth of a standard unit-simple. Thus we can determine our col-
umn of standard values. 

Now we must determine the arithmetic mean that we are going to 
use as input. We determine this empirically from the 232 trades as 
$330.13. Further, we must determine the population standard deviation, 
which we also determine empirically from the 232 trades as $1,743.23. 

Now to determine the column of associated P&L's. That is, we must 
determine a P&L amount for each standard value. Before we can deter-
mine our associated P&L column, we must decide on values for stretch 
and shrink. Since we are not going to perform any "What if types of 
scenarios at this time, we will choose a value of 1 for both stretch and 
shrink. 
Arithmetic mean = 330.13 
Population Standard Deviation = 1743.23 
Stretch = 1 
Shrink = 1 

Using Equation (3.28) we can calculate our associated P&L column. 
We do this by taking each standard value and using it as E in Equation 
(3.28) to get the column of associated P&L's: 
(3.29) D = (U*Shrink)+(S*E*Stretch) 

where 
D = The price value corresponding to a standard unit value. 
E = The standard unit value. 
S = The population standard deviation. 
U = The arithmetic mean. 
For the -3 standard value, the associated P&L is: 

D = (U*Shrink)+(S*E*Stretch) 
 = (330.129*1)+(1743.232*(-3)*1) 
 = 330.129+(-5229.696) 
 = 330.129-5229.696 
 = 4899.567 

Thus, our associated P&L column at a standard value of -3 equals 
4899.567. We now want to construct the associated P&L for the next 
standard value, which is -2.9, so we simply perform the same Equation, 
(3.29), again-only this time we use a value of -2.9 for E. 

Now to determine the associated probability column. This is calcu-
lated using the standard value column as the Z input to Equation (3.21) 
without the preceding 1-and without the-Z provision (i.e, the "If Z < 0 
then N(Z) = 1-N(Z)"). For the standard value of -3 (Z = -3), this is: 
N(Z) = N'(Z)*(( 1.330274429*Y^5)-
(1.821255978*Y^4)+(1.781477937*Y^3)-
(.356563782*Y^2+(.31938153*Y)) 
If Z<0 then N(Z) = 1-N(Z) 

where 
Y = 1/(1+.2316419*ABS(Z)) 

ABS() = The absolute value function. 
N'(Z) = .398942*EXP(-(Z^2/2)) 

EXP() = The exponential function. 
Thus: 

N'(3) = .398942*EXP(-((-3)^2/2)) = .398942*EXP(-(9/2)) = 
.398942*EXP(-4.5) = .398942*.011109 = .004431846678 
Y = 1/(1+2316419*ABS(-3)) = 1/(1+2316419*3) = 1/(1+6949257) = 
1/1.6949257 = .5899963639 
N(-3) = .004431846678*((1.330274429*.5899963639^5)-
(1.821255978*.5899963639^4)+(1.781477937*.5899963639^3)-
(.356563782*.5899963639^2)+(.31938153*.5899963639)) 

 = .004431846678*((1.330274429*.07149022693)-
(1.821255978*.1211706)+(1.781477937*.2053752)-
(.356563782*.3480957094)+(.31938153*.5899963639)) 
 = .004431846678*(.09510162081-.2206826796+.3658713876-
.1241183226+.1884339414) 
 = .004431846678*.3046059476 = .001349966857 

Note that even though Z is negative (Z = -3), we do not adjust N(Z) 
here by making N(Z) = 1-N(Z). Since we are not using the-Z provision, 
we just let the answer be. 

Now for each value in the standard value column there will be a cor-
responding entry in the associated P&L column and in the associated 
probability column. This is shown in the following table. Once you have 
these three columns established you are ready to begin the search for the 
optimal f and its by-products. 
STD VALUE ASSOCIATED P&L ASSOCIATED 

PROBABILITY 
ASSOCIATED 
HPR AT f=.01 

-3.0 ($4,899.57) 0.001350 0.9999864325 
-2.9 ($4,725.24) 0.001866 0.9999819179 
-2.8 ($4,550.92) 0.002555 0.9999761557 
-2.7 ($4,376.60) 0.003467 0.9999688918 
-2.6 ($4,202.27) 0.004661 0.9999598499 
-2.5 ($4,027.95) 0.006210 0.9999487404 
-2.4 ($3,853.63) 0.008198 0.9999352717 
-2.3 ($3,679.30) 0.010724 0.9999191675 
-2.2 ($3,504.98) 0.013903 0.9999001875 
-2.1 ($3,330.66) 0.017864 0.9998781535 
-2.0 ($3,156.33) 0.022750 0.9998529794 
-1.9 ($2,982.01) 0.028716 0.9998247051 
-1.8 ($2,807.69) 0.035930 0.9997935316 
-1.7 ($2,633.37) 0.044565 0.9997598578 
-1.6 ($2,459.04) 0.054799 0.9997243139 
-1.5 ($2,284.72) 0.066807 0.9996877915 
-1.4 ($2,110.40) 0.080757 0.9996514657 
-1.3 ($1,936.07) 0.096800 0.9996168071 
-1.2 ($1,761.75) 0.115070 0.9995855817 
-1.1 ($1,587.43) 0.135666 0.999559835 
-1.0 ($1,413.10) 0.158655 0.9995418607 
-0.9 ($1,238.78) 0.184060 0.9995341524 
-6.8 ($1,064.46) 0.211855 0.9995393392 
-0.7 ($890.13) 0.241963 0.999560108 
-0.6 ($715.81) 0.274253 0.9995991135 
-0.5 ($541.49) 0.308537 0.9996588827 
-0.4 ($367.16) 0.344578 09997417168 
-0.3 ($192.84) 0.382088 0.9998495968 
-0.2 ($18.52) 0.420740 0.9999840984 
-0.1 $155.81 0.460172 1.0001463216 
0.0 $330.13 0.500000 1.0003368389 
0.1 $504.45 0.460172 1.0004736542 
0.2 $678.78 0.420740 1.00058265 
0.3 $853.10 0.382088 1.0006649234 
0.4 $1,027.42 0.344578 1.0007220715 
0.5 $1,201.75 0.308537 1.0007561259 
0.6 $1,376.07 0.274253 1.0007694689 
0.7 $1,550.39 0.241963 1.0007647383 
0.8 $1,724.71 0.211855 1.0007447264 
0.9 $1,899.04 0.184060 1.0007122776 
1.0 $2,073.36 0.158655 1.0006701921 
1.1 $2,247.68 0.135666 1.0006211392 
1.2 $2,422.01 0.115070 .0005675842 
1.3 $2,596.33 0.096800 .0005117319 
1.4 $2,770.65 0.080757 .0004554875 
1.5 $2,944.98 0.066807 1.0004004351 
1.6 $3,119.30 0.054799 1.0003478328 
1.7 $3,293.62 0.044565 .0002986228 
1.8 $3,467.95 0.035930 .0002534528 
1.9 $3,642.27 0.028716 1.0002127072 
2.0 $3,816.59 0.022750 1.0001765438 
2.1 $3,990.92 0.017864 .000144934 
2.2 $4,165.24 0.013903 .0001177033 
2.3 $4,339.56 0.010724 .0000945697 
2.4 $4,513.89 0.008198 .0000751794 
2.5 $4,688.21 0.006210 1.0000591373 
2.6 $4,862.53 0.004661 1.0000460328 
2.7 $5,036.86 0.003467 1.0000354603 
2.8 $5,211.18 0.002555 1.0000270338 
2.9 $5,385.50 0.001866 1.0000203976 
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STD VALUE ASSOCIATED P&L ASSOCIATED 
PROBABILITY 

ASSOCIATED 
HPR AT f=.01 

3.0 $5,559.83 0.001350 1.0000152327 
By-products atf-.01: 
TWR = 1.0053555695 
Sum of the probabilities = 7.9791232176 
Geomean = 1.0006696309 GAT = $328.09 
Here is how you go about finding the optimal f. First, you must de-

termine the search method for f. You can simply loop from 0 to 1 by a 
predetermined amount (e.g., .01), use an iterative technique, or use the 
technique of parabolic interpolation described in Portfolio Management 
formulas. What you seek to find is what value for f (between 0 and 1) 
will result in the highest geometric mean. 

Once you have decided upon a search technique, you must deter-
mine what the worst-case associated P&L is in your table. In our exam-
ple it is the P&L corresponding to -3 standard units, 4899.57. You will 
need to use this particular value repeatedly throughout the calculations. 

In order to find the geometric mean for a given f value, for each 
value of f that you are going to process in your search for the optimal, 
you must convert each associated P&L and probability to an HPR. 
Equation (3.30) shows the calculation for the HPR: 
(3.30) HPR = (1+(L/(W/(-f))))^P 

where 
L = The associated P&L. 
W = The worst-case associated P&L in the table (This will always 

be a negative value). 
f = The tested value for f. 
P = The associated probability. 
Working through an example now where we use the value of .01 for 

the tested value for f, we will find the associated HPR at the standard 
value of -3. Here, our worst-case associated P&L is 4899.57, as is our 
associated P&L. Therefore, our HPR here is: 
HPR = (1+(-4899.57/-4899.57/(-.01))))^.001349966857  
= (1+(-4899.57/489957))^.001349966857  
= (1+(-.01))^.001349966857  
= .99^.001349966857 
 = .9999864325 

Now we move down to our next standard value, of -2.9, where we 
have an associated P&L of -2866.72 and an associated probability of 
0.001865. Our associated HPR here will be: 
HPR = (-4725.24/(-4899.57/(-.01))))^.001866  
= (1+(-4725.24/489957))^001866  
= (1+(-4725.24/489957))^.001866  
= (1+(-.009644193266))^.001866  
= .990355807^.001866  
= .9999819 

Once we have calculated an associated HPR for each standard value 
for a given test value off (.01 in our example table), you are ready to 
calculate the TWR. The TWR is simply the product of all of the HPRs 
for a given f value multiplied together: 
(3.31) TRW = (∏[i = 1,N]HPRi) 

where 
N = The total number of equally spaced data points. 
HPRi = The HPR corresponding to the i'th data point, given by 

Equation (3.30). 
So for our test value off = .01, the TWR will be: 

TWR = .9999864325*.9999819179*...*1.0000152327 = 1.0053555695 
We can readily convert a TWR into a geometric mean by taking the 

TWR to the power of 1 divided by the sum of all of the associated prob-
abilities. 
(3.32) G = TRW^(1/∑[i = 1,N] Pi) 

where 
N = The number of equally spaced data points. 
Pi = The associated probability of the ith data point. 
Note that if we sum the column that lists the 61 associated prob-

abilities it equals 7.979105. Therefore, our geometric mean at f = .01 is: 

G = 1.0053555695^(1/7.979105) = 1.0053555695^.1253273393 = 
1.00066963 

We can also calculate the geometric average trade (GAT). This is 
the amount you would have made, on average per contract per trade, if 
you were trading this distribution of outcomes at a specified f value. 
(3.33) GAT = (G(f)-1)*(w/(-f)) 

where 
G(f) = The geometric mean for a given f value. 
f = The given f value. 
W = The worst-case associated P&L. 
In the case of our example, the f value is .01: 

GAT = (1.00066963-1)*(-4899.57/(-.01))  
= .00066963*489957  
= 328.09 

Therefore, we would expect to make, on average per contract per 
trade, $328.09. 

Now we go to our next value for f that must be tested according to 
our chosen search procedure for the optimal f In the case of our example 
we are looping from 0 to 1 by .01 for f, so our next test value for f is .02. 
We will do the same thing again. We will calculate a new associated 
HPRs column, and calculate our TWR and geometric mean. The f value 
that results in the highest geometric mean is that value for f which is the 
optimal based on the input parameters we have used. 

In our example, if we were to continue with our search for the opti-
mal f, we would find the optimal at f = .744 (I am using a step increment 
of .001 in my search for the optimal f here.) This results in a geometric 
mean of 1.0265. Therefore, the corresponding geometric average trade 
is $174.45. 

It is important to note that the TWR itself doesn't have any real 
meaning as a by-product. Rather, when we are calculating our geometric 
mean parametrically, as we are here, the TWR is simply an interim step 
in obtaining that geometric mean. Now, we can figure what our TWR 
would be after X trades by taking the geometric mean to the power of X. 
Therefore, if we want to calculate our TWR for 232 trades at a geomet-
ric mean of 1.0265, we would raise 1.0265 to the power of 232, obtain-
ing 431.79. So we can state that trading at an optimal f of .744, we 
would expect to make 43,079% ((431.79-1)*100) on our stake after 232 
trades. 

Another by-product we will calculate is our threshold to geometric 
Equation (2.02): 
Threshold to geometric = 330.13/174.45*-4899.57/-.744 = 12,462.32 

Notice that the arithmetic average trade of $330.13 is not something 
that we have calculated with this technique, rather it is a given as it is 
one of the input parameters. 

We can now convert our optimal f into how many contracts to trade 
by the equations: 
(3.34) K = E/Q 

where 
K = The number of contracts to trade. 
E = The current account equity. 

(3.35) Q = W/( -f) 
where 
W = The worst-case associated P&L. 
f = The optimal f value. 
Note that this variable, Q, represents a number that you can divide 

your account equity by as your equity changes on a day-by-day basis to 
know how many contracts to trade. 

Returning now to our example: 
Q = -4,899.57/-.744 = $6,585.44 

Therefore, we will trade 1 contract for every $6,585.44 in account 
equity. For a $25,000 account this means we would trade: 
K = 25000/6585.44 = 3.796253553 

Since we cannot trade in fractional contracts, we must round this 
figure of 3.796253553 down to the nearest integer. We would therefore 
trade 3 contracts for a $25,000 account. The reason we always round 
down rather than up is that the price extracted for being slightly below 
optimal is less than the price for being slightly beyond it. 
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Notice how sensitive the optimal number of contracts to trade is to 
the worst loss. This worst loss is solely a function of how many sigmas 
you have decided to go to the left of the mean. This bounding parameter, 
the range of sigmas, is very important in this calculation. We have cho-
sen three sigmas in our calculation. This means that we are, in effect, 
budgeted for a three-Sigma loss. However, a loss greater than three sig-
mas can really hurt us, depending on how far beyond three sigmas it is. 
Therefore, you should be very careful what value you choose for this 
range bounding parameter. You'll have a lot riding on it. 

Notice that for the sake of simplicity in illustration, we have not de-
ducted commissions and slippage from these figures. If you wanted to 
incorporate commissions and slippage, you should deduct X dollars in 
commissions and slippage from each of the 232 trades at the outset of 
this exercise. You would calculate your arithmetic average trade and 
population standard deviation from this set of 232 adjusted trades, and 
then perform the exercise exactly as described. 

We could now go back and perform a "What if type of scenario 
here. Suppose we want to see what will happen if the system begins to 
perform at only half the profitability it is now (shrink = .5). Further, 
assume that the market that the system we are looking at is in gets very 
volatile, and that as a consequence the dispersion among the trades in-
creases by 60% (stretch = 1.6). By pumping these parameters through 
this system we can see what the optimal will be so that we can make 
adjustments to our trading before these changes become history. In so 
doing we find that the optimal f now becomes ,262, or to trade 1 con-
tract for every $31,305.92 in account equity (since the worst-case asso-
ciated P&L is strongly affected by changes in stretch and shrink). This is 
quite a change. This means that if these changes in the market system 
start to materialize, we are going to have to do some altering in our 
money management regarding that system. The geometric mean will 
drop to 1.0027, the geometric average trade will be cut to $83.02, and 
the TWR over 232 trades will be 1.869. This is not even close to what it 
presently would be. All of this is predicated upon a 50% decrease in 
average trade and a 60% increase in standard deviation. This quite pos-
sibly could happen. It is also quite possible that the future could work 
out more favorably than the past. We can test this out, too. Suppose we 
want to see what will happen if our average profit increases by only 
10%. We can check this by inputting a shrink value of 1.1. These “What 
if” parameters, stretch and shrink, really give us a great deal of power in 
our money management. 

The closer your distribution of trade P&L's is to Normal to begin 
with, the better the technique will work for you. The problem with al-
most any money management technique is that there is a certain amount 
of "slop" involved. Here, we can define slop as the difference between 
the Normal Distribution and the distribution we are actually using. The 
difference between the two is slop, and the more slop there is, the less 
effective the technique becomes. 

To illustrate, recall that using this method we have determined that 
to trade 1 contract for every $6,585.44 in account equity is optimal. 
However, if we were to go over these trades and find our optimal f em-
pirically, we would find that the optimal is to trade 1 contract for every 
$7,918.04 in account equity. As you can see, using the Normal Distribu-
tion technique here would have us slightly to the right of the f curve, 
trading slightly more contracts than the empirical would suggest. 

However, as we shall see, there is a lot to be said for expecting the 
future distribution of prices to be Normally distributed. When someone 
buys or sells an option, the assumption that the future distribution of the 
log of price changes in the underlying instrument will be Normal is built 
into the price of the option. Along this same line of reasoning, someone 
who is entering a trade in a market and is not using a mechanical system 
can be said to be looking at the same possible future distribution. 

The technique detailed in this chapter was shown using data that 
was not equalized. We can also use this very same technique on equal-
ized data by incorporating the following changes: 

Before the data is standardized, it should be equalized by first con-
verting all of the trade profits and losses to percentage profits and losses 
per Equations (2.10a) through (2.10c). Then these percentage profits and 
losses should be translated into percentages of the current price by sim-
ply multiplying them by the current price. 
1. When you go to standardize this data, standardize the now equalized 
data by using the mean and standard deviation of the equalized data. 

2. The rest of the procedure is the same as written in this chapter in 
terms of determining the optimal f, geometric mean, and TWR. The 
geometric average trade, arithmetic average trade, and threshold to the 
geometric are only valid for the current price of the underlying instru-
ment. When the price of the underlying instrument changes, the proce-
dure must be done again, going back to step 1 and multiplying the per-
centage profits and losses by the new underlying price. When you go to 
redo the procedure with a different underlying price, you will obtain the 
same optimal f, geometric mean, and TWR. However, your arithmetic 
average trade, geometric average trade, and threshold to the geometric 
will differ, depending on the new price of the underlying instrument. 
3. The number of contracts to trade as given in Equation (3.34) must be 
changed. The worst-case associated P&L, the W variable in Equation 
(3.34) [as subequation (3.35)] will be different as a result of the changes 
caused in the equalized data by a different current price. 

In this chapter we have learned how to find the optimal f on a 
probability distribution. We have used the Normal Distribution be-
cause it shows up so frequently in many naturally occurring processes 
and because it is easier to work with than many other distributions, 
since its cumulative density function, Equation (3.21), exists.5 Yet the 
Normal is often regarded as a poor model for the distribution of trade 
profits and losses. What then is a good model for our purposes? In the 
next chapter we will address this question and build upon the tech-
niques we have learned in this chapter to work for any type of prob-
ability distribution, whether its cumulative density function is known 
or not. 

                                                                 
5 Again, the cumulative density function to the Normal Distribution does not 
really exist, but rather is very closely approximated by Equation (3.21). However, 
the cumulative density of the Normal can at least be approximated by an equa-
tion, a luxury which not all distributions possess. 
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Chapter 4 - Parametric Techniques on 
Other Distributions 

We have seen in the previous chapter how to find the optimal f 
and its by-products on the Normal Distribution. The same technique 
can be applied to any other distribution where the cumulative density 
function is known. Many of these more common distributions and 
their cumulative density functions are covered in Appendix B. Unfor-
tunately, most distributions of trade P&L's do not fit neatly into the 
Normal or other common distribution functions. In this chapter we 
first treat this problem of the undefined nature of the distribution of 
trade P&L's and later look at the technique of scenario planning, a 
natural outgrowth of the notion of optimal f. This technique has many 
broad applications. This then leads into finding the optimal f on a 
binned distribution, which leads us to the next chapter regarding both 
options and multiple simultaneous positions. 

Before we attempt to model the real distribution of trade P&L's, 
we must have a method for comparing two distributions. 

THE KOLMOGOROV-SMIRNOV (K-S) TEST 
The chi-square test is no doubt the most popular of all methods of 

comparing two distributions. Since many market-oriented applications 
other than the ones we perform in this chapter often use the chi-square 
test, it is discussed in Appendix A. However, the best test for our pur-
poses may well be the K-S test. This very efficient test is applicable to 
unbinned distributions that are a function of a single independent vari-
able (profit per trade in our case). 

All cumulative density functions have a minimum value of 0 and a 
maximum value of 1. What goes on in between differentiates them. The 
K-S test measures a very simple variable, D, which is defined as the 
maximum absolute value of the difference between two distributions' 
cumulative density functions. 

To perform the K-S test is relatively simple. N objects (trades in our 
case) are standardized (by subtracting the mean and dividing by the 
standard deviation) and sorted in ascending order. As we go through 
these sorted and standardized trades, the cumulative probability is how-
ever many trades we've gone through divided by N. When we get to our 
first trade in the sorted sequence, the trade with the lowest standard 
value, the cumulative density function (CDF) is equal to 1/N. With each 
standard value that we pass along the way up to our highest standard 
value, 1 is added to the numerator until, at the end of the sequence, our 
CDF is equal to N/N or 1. 

For each standard value we can compute the theoretical distribution 
that we wish to compare to. Thus, we can compare our actual cumula-
tive density to any theoretical cumulative density. The variable D, the 
K-S statistic, is equal to the greatest distance between any standard val-
ues of our actual cumulative density and the value of the theoretical 
distribution's CDF at that standard value. Whichever standard value 
results in the greatest difference is assigned to the variable D. 

When comparing our actual CDF at a given standard value to the 
theoretical CDF at that standard value, we must also compare the previ-
ous standard value's actual CDF to the current standard value's actual 
CDF. The reason is that the actual CDF breaks upward instantaneously 
at the data points, and, if the actual is below the theoretical, the differ-
ence between the lines is greater the instant before the actual jumps up. 
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Figure 4-1 The K-S test. 

To see this, look at Figure 4-1. Notice that at point A the actual line 
is above the theoretical. Therefore, we want to compare the current ac-
tual CDF value to the current theoretical value to find the greatest dif-
ference. Yet at point B, the actual line is below the theoretical. There-
fore, we want to compare the previous actual value to the current theo-
retical value. The rationale is that we are measuring the greatest distance 
between the two lines. Since we are measuring at the instant the actual 
jumps up, we can consider using the previous value for the actual as the 
current value for the actual the instant before it jumps. 

In summary, then, for each standard value, we want to take the ab-
solute value of the difference between the current actual CDF value and 
the current theoretical CDF value. We also want to take the absolute 
value of the difference between the previous actual CDF value and the 
current theoretical CDF value. By doing this for all standard values, all 
points where the actual CDF jumps up by 1/N, and taking the greatest 
difference, we will have determined the variable D. 

The lower the value of D, the more the two distributions are alike. 
We can readily convert the D value to a significance level by the follow-
ing formula: 
(4.01) SIG = ∑[j = 1, ∞] (j%2)*4-2*EXP(-2*j^2*(N^(1/2)*D)^2) 

where 
SIG = The significance level for a given D and N. 
D = The K-S statistic. 
N = The number of trades that the K-S statistic is determined over. 
% = The modulus operator, the remainder from division. As it is 

used here, J % 2 yields the remainder when J is divided by 2. 
EXP() = The exponential function. 
There is no need to keep summing the values until J gets to infinity. 

The equation converges (in short order, usually) to a value. Once the 
convergence is obtained to a close enough user tolerance, there is no 
need to continue summing values. 

To illustrate Equation (4.01) by example. Suppose we had 100 
trades that yielded a K-S statistic of .04: 
J1 = (1%2)*4-2*EXP(-2*1^2*(100^(1/2)*.04)^2) 
= 1*4-2*EXP(-2*1^2*(10*.04)^2)  
= 2*EXP(-2*1^2*.4^2)  
=2*EXP(-2*1*.16)  
= 2*EXP(-.32)  
= 2*.726149  
= 1.452298 

So our first value is 1.452298. Now to this we will add the next pass 
through the equation, and as such we must increment J by 1 so that J 
now equals J2: 
J2 = (2%2)*4-2*EXP(-2*2^2*(100^(1/2)*.04)^2)  
= 0*4-2*EXP(-2*2^2*(10*.04)^2)  
= -2*EXP(-2*2^2*.4^2)  
= -2*EXP(-2*4*.16)  
= -2*EXP(-1.28)  
= -2*.2780373  
= -.5560746 
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Adding this value of -.5560746 back into our running sum of 
1.452298 gives us a new running sum of .8962234. We again increment 
J by 1, so it equals J3, and perform the equation. We take the resulting 
sum and add it to our running total of .8962234. We keep on doing this 
until we converge to a value within a close enough tolerance. For our 
example, this point of convergence will be right around .997, depending 
upon how many decimal places we want to be accurate to. This answer 
means that for 100 trades where the greatest value between the two dis-
tributions was .04, we can be 99.7% certain that the actual distribution 
was generated by the theoretical distribution function. In other words, 
we can be 99.7% certain that the theoretical distribution function repre-
sents the actual distribution. Incidentally, this is a very good signifi-
cance level. 

CREATING OUR OWN CHARACTERISTIC DISTRIBUTION 
FUNCTION 

We have determined that the Normal Probability Distribution is 
generally not a very good model of the distribution of trade profits and 
losses. Further, none of the more common probability distributions are 
either. Therefore, we must create a function to model the distribution of 
our trade profits and losses ourselves. 

The distribution of the logs of price changes is generally assumed to 
be of the stable Paretian variety (for a discussion of the stable Paretian 
distribution, refer to Appendix B). The distribution of trade P&L's can 
be regarded as a transformation of the distribution of prices. This trans-
formation occurs as a result of trading techniques such as traders trying 
to cut their losses and let their profits run. Hence, the distribution of 
trade P&L's can also be regarded as of the stable Paretian variety. What 
we are about to study, however, is not the stable Paretian. 

The stable Paretian, like all other distributional functions, models a 
specific probability phenomenon. The stable Paretian models the distri-
bution of sums of independent, identically distributed random variables. 
The distributional function we arc about to study does not model a spe-
cific probability phenomenon. Rather, it models other unimodal distri-
butional functions. As such, it can replicate the shape, and therefore the 
probability densities, of the stable Paretian as well as any other unimo-
dal distribution. 

Now we will create this function. To begin with, consider the fol-
lowing equation: 
(4.02) Y = 1/(X^2+1) 

This equation graphs as a general bell-shaped curve, symmetric 
about the X axis, as is shown in Figure 4-2. 
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Figure 4-2 LOC = 0 SCALE = 1 SKEW = 0 KURT = 2. 

We will thus build from this general equation. The variable X can 
be thought of as the number of standard units we are either side of the 
mean, or Y axis. We can affect the first moment of this "distribution," 
the location, by adding a value to represent a change in location to X. 
Thus, the equation becomes: 
(4.03) Y = 1/((X-LOC)^2+1) 

where 
Y = The ordinate of the characteristic function. 
X = The standard value amount. 
LOC = A variable representing the location, the first moment of the 

distribution. 

Thus, if we wanted to alter location by moving it to the left by 1/2 
of a standard unit, we would set LOC to -.5. This would give us the 
graph depicted in Figure 4-3. 
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Figure 4-3 LOC =-.5 SCALE = 1 SKEW = 0 KURT = 2 

Likewise, if we wanted to shift location to the right, we would use a 
positive value for the LOC variable. Keeping LOC at zero will result in 
no shift in location, as depicted in Figure 4-2. 

The exponent in the denominator affects kurtosis. Thus far, we have 
seen the distribution with the kurtosis set to a value of 2, but we can 
control the kurtosis of the distribution by changing the value of the ex-
ponent. This alters our characteristic function, which now appears as: 
(4.04) Y = 1/((X-LOC)^KURT+1) 

where 
Y = The ordinate of the characteristic function. 
X = The standard value amount. 
LOC = A variable representing the location, the first moment of the 

distribution. 
KURT = A variable representing kurtosis, the fourth moment of the 

distribution. 
Figures 4-4 and 4-5 demonstrate the effect of the kurtosis variable 

on our characteristic function. Note that the higher the exponent the 
more flat topped and thin-tailed the distribution (platykurtic), and the 
lower the exponent, the more pointed the peak and thicker the tails of 
the distribution (leptokurtic). 
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Figure 4-4 LOC = 0 SCALE  = 1 SKEW =0 KURT  = 3. 
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Figure 4-5 LOC = 0 SCALE = 1 SKEW = 0 KURT = 1 

So that we do not run into problems with irrational numbers when 
KURT<1, we will use the absolute value of the coefficient in the de-
nominator. This does not affect the shape of the curve. Thus, we can 
rewrite Equation (4.04) as: 
(4.04) Y = 1/(ABS(X-LOC)^KURT+1) 

We can put a multiplier on the coefficient in the denominator to al-
low us to control the scale, the second moment of the distribution. Thus, 
our characteristic function has now become: 
(4.05) Y = 1/(ABS((X-LOC)*SCALE) ^ KURT+1) 

where 
Y = The ordinate of the characteristic function. 
X = The standard value amount. 
LOC = A variable representing the location, the first moment of the 

distribution. 
SCALE = A variable representing the scale, the second moment of 

the distribution. 
KURT = A variable representing kurtosis, the fourth moment of the 

distribution. 
Figures 4-6 and 4-7 demonstrate the effect of the scale parameter. 

The effect of this parameter can be thought of as moving the horizontal 
axis up or down on the distribution. When the axis is moved up (by 
decreasing scale), the graph is also enlarged. This results in what we 
have in Figure 4-6. This has the effect of moving the horizontal axis up 
and enlarging the distribution curve. The result is as though we were 
looking at the "cap" of the distribution. Figure 4-7 does just the oppo-
site. As is borne out in the figure, the effect is that the horizontal axis 
has been moved down and the distribution curve shrunken. 
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Figure 4-6 LOC = 0 SCALE = .5 SKEW = 0 KURT = 2. 
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Figure 4-7 LOC = 0 SCALE = 2 SKEW = 0 KURT = 2. 

We now have a characteristic function to a distribution whereby we 
have complete control over three of the first four moments of the distri-
bution. Presently, the distribution is symmetric about the location. What 
we now need is to be able to incorporate a variable for skewness, the 
third moment of the distribution, into this function. To account for 
skewness, we must amend our function further. Our characteristic func-
tion has now evolved to: 
(4.06) Y = (1/(ABS((X-LOC)*SCALE)^KURT+1))^C 

where 
C = The exponent for skewness, calculated as: 

(4.07) C = (1+(ABS(SKEW)^ABS( 1/(X-LOC))*sign(X)*-
sign(SKEW)))^.5 

Y = The ordinate of the characteristic function. X = The standard 
value amount. 

LOC = A variable representing the location, the first moment of the 
distribution. 

SCALE = A variable representing the scale, the second moment of 
the distribution. 

SKEW = A variable representing the skewness, the third moment of 
the distribution. 

KURT = A variable representing kurtosis, the fourth moment of the 
distribution. 

sign() = The sign function, equal to 1 or -1. The sign of X is calcu-
lated as X/ABS(X) for X not equal to 0. If X is equal to zero, the sign 
should be regarded as positive. 

Figures 4-8 and 4-9 demonstrate the effect of the skewness variable 
on our distribution. 
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Figure 4-8 LOC = 0 SCALE = 1 SKEW = -.5 KURT = 2. 
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Figure 4-9 LOC = 0 SCALE = 1 SKEW = +.5 KURT = 2. 

A few important notes on the four parameters LOC, SCALE, 
SKEW, and KURT. With the exception of the variable LOC (which is 
expressed as the number of standard values to offset the distribution by), 
the other three variables are nondimensional - that is, their values are 
pure numbers which have meaning only in a relative context, character-
izing the shape of the distribution and are relevant only to this distribu-
tion. 

Furthermore, the parameter values are not the same values you 
would get if you employed any of the standard measuring techniques 
detailed in "Descriptive Measures of Distributions" in Chapter 3. For 
instance, if you determined one of Pearson's coefficients of skewness on 
a set of data, it would not be the same value that you would use for the 
variable SKEW in the adjustable distributions here. The values for the 
four variables are unique to our distribution and have meaning only in a 
relative context. 

Also of importance is the range that the variables can take. The 
SCALE. variable must always be positive with no upper bound, and 
likewise with KURT. In application, though, you will generally use 
values between .5 and 3, and in extreme cases between .05 and 5. How-
ever, you can use values beyond these extremes, so long as they are 
greater than zero. 

The LOC variable can be positive, negative, or zero. The SKEW pa-
rameter must be greater than or equal to -1 and less than or equal to +1. 
When SKEW equals +1, the entire right side of the distribution (right of 
the peak) is equal to the peak, and vice versa when SKEW equals -1. 

The ranges on the variables are summarized as: 
(4.08) -infinity<LOC<+infinity 
(4.09) SCALE>0 
(4.10) -1<=SKEW<=+1 
(4.11) KURT>0 

Figures 4-2 through 4-9 demonstrate just how pliable our distribu-
tion is. We can fit these four parameters such that the resultant distribu-
tion can fit to just about any other distribution. 

FITTING THE PARAMETERS OF THE DISTRIBUTION 
Just as with the process described in Chapter 3 for finding our opti-

mal f on the Normal Distribution, we must convert our raw trades data 
over to standard units. We do this by first subtracting the mean from 
each trade, then dividing by the population standard deviation. From this 
point forward, we will be working with the data in standard units rather 
than in its raw form. After we have our trades in standard values, we can 
sort them in ascending order. With our trades data arranged this way, we 
will be able to perform the K-S test on it. 

Our objective now is to find what values for LOC, SCALE, SKEW, 
and KURT best fit our actual trades distribution. To determine this "best 
fit" we rely on the K-S test. We estimate the parameter values by em-
ploying the "twentieth-century brute force technique." We run every 
combination for KURT from 3 to .5 by -.1 (we could just as easily run it 
from .5 to 3 by .1, as it doesn't matter whether we ascend or descend 
through the values). We also run every combination for SCALE from 3 
to .5 by -.1, For the time being we leave LOC and SKEW at 0. Thus, we 
are going to run the following combinations: 
LOC SCALE SKEW KURT 

0  3  0  3  
0  3  0  2.9  
0  3  0  2.8  
0  3  0  2.7  
0  3  0  2.6  
0  3  0  2.5  
0  3  0  2.4  
0  3  0  2.3  
0  3  0  2.2  
0  3  0  2.1  
0  3  0  2  
0  3  0  1.9  
0  2.9  0  3  
0  2.9  0  2.9  
0  .5  0  .6  
0  .5  0  .5  

We perform the K-S test for each combination. The combination 
that results in the lowest K-S statistic we assume to be our optimal best-
fitting Parameter values for SCALE and KURT (for the time being). 

To perform the K-S test for each combination, we need both the ac-
tual distribution and the theoretical distribution (determined from the 
parameters for the adjustable distribution that we are testing). We al-
ready have seen how to construct the actual cumulative density as X/N, 
where N is the total number of trades and X is the ranking (between 1 
and N) of a given trade. Now we need to calculate the CDF, (the func-
tion for what percentage of the area of the characteristic function a cer-
tain point constitutes) for our theoretical distribution for the given LOC, 
SCALE, SKEW, and KURT parameter values we are presently looping 
through. 

We have the characteristic function for our adjustable distribution. 
This is Equation (4.06). To obtain a CDF from a distribution's character-
istic function we must find the integral of the characteristic function. We 
define the integral, the percentage of area under the characteristic func-
tion at point X, as N(X). Thus, since Equation (4.06) gives us the first 
derivative to the integral, we define Equation (4.06) as N'(X). 

Often you may not be able to derive the integral of a function, even 
if you are proficient in calculus. Therefore, rather than determining the 
integral to Equation (4.06), we are going to rely on a different technique, 
one that, although a bit more labor intensive, is hardier than the tech-
nique of finding the integral. 

The respective probabilities can always be estimated for any point 
on the function's characteristic line by making the distribution be a se-
ries of many bars. Then, for any given bar on the distribution, you can 
calculate the probability associated at that bar by taking the sum of the 
areas of all those bars to the left of your bar, including your bar, and 
dividing it by the sum of the areas of all the bars in the distribution. The 
more bars you use, the more accurate your estimated probabilities will 
be. If you could use an infinite number of bars, your estimate would be 
exact. 

We now discuss the procedure for finding the areas under our ad-
justable distribution by way of an example. Assume we wish to find 
probabilities associated with every .1 increment in standard values from 
-3 to +3 sigmas of our adjustable distribution. Notice that our table (p. 
163) starts at -5 standard units and ends at +5 standard units, the reason 
being that you should begin and end 2 sigmas beyond the bounding 
parameters (-3 and +3 sigmas in this case) to get more accurate results. 
Therefore, we begin our table at -5 sigmas and end it at +5 sigmas. 

Notice that X represents the number of standard units that we are 
away from the mean. This is then followed by the four parameter values. 
The next column is the N'(X) column, the height of the curve at point X 
given these parameter values. N'(X) is calculated as Equation (4.06). 

We now work with Equation (4.06). Assume that we want to calcu-
late N'(X) for X at -3, with the values for the parameters of .02, 2.76, 0, 
and 1.78 for LOC, SCALE, SKEW, and KURT respectively. First, we 
calculate the exponent of skewness, C in Equation (4.06)-given as Equa-
tion (4.07)-as: 
x LOC SCA

LE 
SKE
W 

KURT N'(X)Eq.(4.06) RUNNING-
SUM 

N(X) 

-5.0 0.02 2.76 0 1.78 0.0092026741 0.0092026741 0.000388 
-4.9 0.02 2.76 0 1.78 0.0095350519 0.018737726 0.001178 
-4.8 0.02 2.76 0 1.78 0.0098865117 0.0286242377 0.001997 
-4.7 0.02 2.76 0 1.78 0.01025857 0.0388828077 0.002847 
-4.6 0.02 2.76 0 1.78 0.0106528988 0.0495357065 0.003729 
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x LOC SCA
LE 

SKE
W 

KURT N'(X)Eq.(4.06) RUNNING-
SUM 

N(X) 

-4.5 0.02 2.76 0 1.78 0.0110713449 0.0606070514 0.004645 
-4.4 0.02 2.76 0 1.78 0.0115159524 0.0721230038 0.005598 
-4.3 0.02 2.76 0 1.78 0.0119889887 0.08411I9925 0.006590 
-4.2 0.02 2.76 0 1.78 0.0124929748 0.0966049673 0.007622 
-4.1 0.02 2.76 0 1.78 0.0130307203 0.I096356876 0.008699 
-4.0 0.02 2.76 0 1.78 0.0136053639 0.1232410515 0.009823 
-3.9 0.02 2.76 0 1.78 0.0142204209 0.1374614724 0.010996 
-3.8 0.02 2.76 0 1.78 0.0148798398 0.1523413122 0.012224 
-3.7 0.02 2.76 0 1.78 0.0155880672 0.1679293795 0.013509 
-3.6 0.02 2.76 0 1.78 0.0163501266 0.184279506 0.014856 
-3.5 0.02 2.76 0 1.78 0.0171717099 0.2014512159 0.016270 
-3.4 0.02 2.76 0 1.78 0.0180592883 0.2195105042 0.017756 
-3.3 0.02 2.76 0 1.78 0.0190202443 0.2385307485 0.019320 
-3.2 0.02 2.76 0 1.78 0.0200630301 0.2585937786 0.020969 
-3.1 0.02 2.76 0 1.78 0.0211973606 0.2797911392 0.022709 
-3.0 0.02 2.76 0 1.78 0.0224344468 0.302225586 0.024550 
-2.9 0.02 2.76 0 1.78 0.0237872819 0.3260128679 0.026499 
-2.8 0.02 2.76 0 1.78 0.0252709932 0.3512838612 0.028569 
-2.7 0.02 2.76 0 1.78 0.0269032777 0.3781871389 0.030770 
-2.6 0.02 2.76 0 1.78 0.0287049446 0.4068920835 0.033115 
-2.5 0.02 2.76 0 1.78 0.0307005967 0.4375926802 0.035621 
-2.4 0.02 2.76 0 1.78 0.032919491I 0.4705121713 0.038305 
-2.3 0.02 2.76 0 1.78 0.0353966362 0.5059088075 0.041186 
-2.2 0.02 2.76 0 1.78 0.0381742015 0.544083009 0.044290 
-2.1 0.02 2.76 0 1.78 0.041303344 0.5853863529 0.047642 
-2.0 0.02 2.76 0 1.78 0.0448465999 0.6302329529 0.051276 
-1.9 0.02 2.76 0 1.78 0.0488810452 0.6791139981 0.055229 
-1.8 0.02 2.76 0 1.78 0.0535025185 0.7326165166 0.059548 
-1.7 0.02 2.76 0 1.78 0.0588313292 0.7914478458 0.064287 
-1.6 0.02 2.76 0 1.78 0.0650200649 0.8564679107 0.06951I 
-1.5 0.02 2.76 0 1.78 0.0722644105 0.9287323213 0.075302 
-1.4 0.02 2.76 0 1.78 0.080818341 1.0095506622 0.081759 
-1.3 0.02 2.76 0 1.78 0.0910157581 1.1005664203 0.089007 
-1.2 0.02 2.76 0 1.78 0.1033017455 1.2038681658 0.097204 
-1.1 0.02 2.76 0 1.78 0.I182783502 1.322146516 0.106550 
-1.0 0.02 2.76 0 1.78 0.1367725028 1.4589190187 0.117308 
-0.9 0.02 2.76 0 1.78 0.1599377464 1.6188567651 0.129824 
-0.8 0.02 2.76 0 1.78 0.1894070001 1.8082637653 0.144560 
-0.7 0.02 2.76 0 1.78 0.2275190511 2.0357828164 0.162146 
-0.6 0.02 2.76 0 1.78 0.2776382822 2.3134210986 0.183455 
-0.5 0.02 2.76 0 1.78 0.3445412618 2.6579623604 0.209699 
-0.4 0.02 2.76 0 1.78 0.4346363128 3.0925986732 0.242566 
-0.3 0.02 2.76 0 1.78 0.5550465747 3.6476452479 0.284312 
-0.2 0.02 2.76 0 1.78 0.7084848615 4.3561301093 0.337609 
-0.1 0.02 2.76 0 1.78 0.8772840491 5.2334141584 0.404499 
0.0 0.02 2.76 0 1.78 1 6.2334141584 0.483685 
0.1 0.02 2.76 0 1.78 0.9363557429 7.1697699013 0.565363 
0.2 0.02 2.76 0 1.78 0.776473162 7.9462430634 0.637613 
0.3 0.02 2.76 0 1.78 0.6127219404 8.5589650037 0.696211 
0.4 0.02 2.76 0 1.78 0.4788099392 9.0377749429 0.742253 
0.5 0.02 2.76 0 1.78 0.377388991 9.4151639339 0.778369 
0.6 0.02 2.76 0 1.78 0.3020623672 9.7172263011 0.807029 
0.7 0.02 2.76 0 1.78 0.2458941852 9.9631204863 0.830142 
0.8 0.02 2.76 0 1.78 0.2034532796 10.1665737659 0.849096 
0.9 0.02 2.76 0 1.78 0.1708567846 10.3374305505 0.864885 
1.0 0.02 2.76 0 1.78 0.1453993995 10.48282995 0.878225 
1.1 0.02 2.76 0 1.78 0.1251979811 10.6080279311 0.889639 
1.2 0.02 2.76 0 1.78 0.1089291462 10.7169570773 0.899515 
1.3 0.02 2.76 0 1.78 0.0956499316 10.8126070089 0.908145 
1.4 0.02 2.76 0 1.78 0.0846780659 10.8972850748 0.915751 
1.5 0.02 2.76 0 1.78 0.0755122067 10.9727972814 0.922508 
1.6 0.02 2.76 0 1.78 0.0677784099 11.0405756913 0.928552 
1.7 0.02 2.76 0 1.78 0.0611937787 11.10176947 0.933993 
1.8 0.02 2.76 0 1.78 0.0555414402 11.1573109102 0.938917 
1.9 0.02 2.76 0 1.78 0.0506530744 11.2079639847 0.943396 
2.0 0.02 2.76 0 1.78 0.0463965419 11.2543605266 0.947490 
2.1 0.02 2.76 0 1.78 0.0426670018 11.2970275284 0.951246 
2.2 0.02 2.76 0 1.78 0.0393804519 11.3364079803 0.954707 
2.3 0.02 2.76 0 1.78 0.0364689711 11.3728769515 0.957907 
2.4 0.02 2.76 0 1.78 0.0338771754 11.4067541269 0.960874 
2.5 0.02 2.76 0 1.78 0.0315595472 11.4383136741 0.963634 
2.6 0.02 2.76 0 1.78 0.0294784036 11.4677920777 0.966209 
2.7 0.02 2.76 0 1.78 0.0276023341 11.4953944118 0.968617 
2.8 0.02 2.76 0 1.78 0.0259049892 11.5212994011 0.970874 
2.9 0.02 2.76 0 1.78 0.0243641331 11.5456635342 0.972994 
3.0 0.02 2.76 0 1.78 0.0229608959 11.5686244301 0.974990 
3.1 0.02 2.76 0 1.78 0.0216791802 11.5903036102 0.976873 

x LOC SCA
LE 

SKE
W 

KURT N'(X)Eq.(4.06) RUNNING-
SUM 

N(X) 

3.2 0.02 2.76 0 1.78 0.0205051855 11.6108087957 0.978653 
3.3 0.02 2.76 0 1.78 0.0194270256 11.6302358213 0.980337 
3.4 0.02 2.76 0 1.78 0.0184344179 11.6486702392 0.981934 
3.5 0.02 2.76 0 1.78 0.0175184304 11.6661886696 0.983451 
3.6 0.02 2.76 0 1.78 0.0166712734 11.682859943 0.984893 
3.7 0.02 2.76 0 1.78 0.0158861285 11.6987460714 0.986266 
3.8 0.02 2.76 0 1.78 0.0151570063 11.7139030777 0.987576 
3.9 0.02 2.76 0 1.78 0.014478628 11.7283817056 0.988826 
4.0 0.02 2.76 0 1.78 0.0138463263 11.742228032 0.990020 
4.1 0.02 2.76 0 1.78 0.0132559621 11.7554839941 0.991164 
4.2 0.02 2.76 0 1.78 0.012703854 11.7681878481 0.992259 
4.3 0.02 2.76 0 1.78 0.0121867187 11.7803745668 0.993309 
4.4 0.02 2.76 0 1.78 0.0117016203 11.7920761871 0.994316 
4.5 0.02 2.76 0 1.78 0.0112459269 11.8033221139 0.995284 
4.6 0.02 2.76 0 1.78 0.0108172734 11.8141393873 0.996215 
4.7 0.02 2.76 0 1.78 0.0104135298 11.8245529171 0.997110 
4.8 0.02 2.76 0 1.78 0.0100327732 11.8345856903 0.997973 
4.9 0.02 2.76 0 1.78 0.0096732643 11.8442589547 0.998804 
5.0 0.02 2.76 0 1.78 0.0093334265 11.8535923812 0.999606 
(4.07) C = (1+(ABS(SKEW)^ABS(1/(X-LOC))*sign(X)*-
sign(SKEW)))^.5  
= (1+(ABS(0)^ABS(l/(-3-.02))*-1*-1))^5  
= (1+0)^.5 = 1 

Thus, substituting 1 for C in Equation (4.06): 
(4.06) Y= (1/(ABS((X-LOC)*SCALE)^KUKT+1))^C 
= (l/(ABS((-3-.02)*2.76)^1.78+1))^1  
= (1/((3.02*2.76)^1.78+1))^1  
= (1/(8.3352^1.78+1))^1  
= (1/(43.57431058+1))^1  
= (1/44.57431058)^1  
= .02243444681^1  
= .02243444681 

Thus, at the point X = -3, the N'(X) value is .02243444681. (Notice 
that we calculate an N'(X) column, which corresponds to every value of 
X). The next step we must perform, the next column, is the running sum 
of the N'(X)'s as we advance up through the X's. This is straight forward 
enough. Now we calculate the N(X) column, the resultant probabilities 
associated with each value of X, for the given parameter values. To do 
this, we must perform Equation (4.12): 
(4.12) N(C) = (∑[i = 1,C]N'(Xi)+∑[i = 1,C-1]N'(Xi))/2/ ∑[i = 
1,M]N'(Xi) 

where 
C = The current X value. 
M = The total count of X values. 
Equation (4.12) says, literally, to add the running sum at the current 

value of X to the running sum at the previous value of X as we advance 
up through the X's. Now divide this sum by 2. Then take the new quo-
tient and divide it by the last value in the column of the running sum of 
the N'(X)'s (the total of the N'(X) column). This gives us the resultant 
probabilities for a given value of X, for given parameter values. 

Thus, for the value of -3 for X, the running sum of the N'(X)'s at -3 
is .302225586, and the previous X, -3.1, has a running sum value of 
.2797911392. Summing these two running sums together gives us 
5820167252. Dividing this by 2 gives us .2910083626. Then dividing 
this by the last value in the running sum column, the total of all of the 
N'(X)'s, 11.8535923812, gives us a quotient of .02455022522. This is 
the associated probability, N(X), at the standard value of X = -3. 

Once we have constructed cumulative probabilities for each trade in 
the actual distribution and probabilities for each standard value incre-
ment in our adjustable distribution, we can perform the K-S test for the 
parameter values we are currently using. Before we do, however, we 
must make adjustments for a couple of other preliminary considerations. 

In the example of the table of cumulative probabilities shown earlier 
for our adjustable distribution, we calculated probabilities at every .1 
increment in standard values. This was for the sake of simplicity. In 
practice, you can obtain a greater degree of accuracy by using a smaller 
step increment. I find that using .01 standard values is a good step in-
crement. 
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A word on how to determine your bounding parameters in actual 
practice-that is, how many sigmas either side of the mean you should go 
in determining your probabilities for our adjustable distribution. In our 
example we were using 3 sigmas either side of the mean, but in reality 
you must use the absolute value of the farthest point from the mean. For 
our 232-trade example, the extreme left (lowest) standard value is -2.96 
standard units and the extreme right (highest) is 6.935321 standard 
units. Since 6.93 is greater than ABS(-2.96), we must take the 6.935321. 
Now, we add at least 2 sigmas to this value, for the sake of accuracy, 
and construct probabilities for a distribution from -8.94 to +8.94 sigmas. 
Since we want a good deal of accuracy, we will use a step increment of 
.01. Therefore, we will figure probabilities for standard values of: 

-8.94 
-8.93 
-8.92 
-8.91 
 
+8.94 
Now, the last thing we must do before we can actually perform our 

K-S statistic is to round the actual standard values of the sorted trades to 
the nearest .01 (since we are using .01 as our step value on the theoreti-
cal distribution). For example, the value 6.935321 will not have a corre-
sponding theoretical probability associated with it, since it is in between 
the step values 6.93 and 6.94. Since 6.94 is closer to 6.935321, we round 
6.935321 to 6.94. Before we can begin the procedure of optimizing our 
adjustable distribution parameters to the actual distribution by employ-
ing the K-S test, we must round our actual sorted standardized trades to 
the nearest step increment. 

In lieu of rounding the standard values of the trades to the nearest 
Xth decimal place you can use linear interpolation on your table of cu-
mulative probabilities to derive probabilities corresponding to the actual 
standard values of the trades. For more on linear interpolation, consult a 
good statistics book, such as some of the ones suggested in the bibliog-
raphy or Commodity Market Money Management by Fred Gehm. 

Thus far, we have been optimizing only for the best-fitting KURT 
and SCALE values. Logically, it would seem that if we standardized our 
data, as we have, then the LOC parameter should be kept at 0 and the 
SCALE parameter should be kept at 1. This is not necessarily true, as 
the true location of the distribution may not be the arithmetic mean, and 
the true optimal value for scale may not be at 1. The KURT and SCALE 
values have a very strong relationship to one another. Thus, we first try 
to isolate the -"neighborhood" of best-fitting parameter values for 
KURT and SCALE. For our 232 trades this occurs at SCALE equal to 
2.7 and KURT equal to 1.9. 

Now we progressively try to zero in on the best-fitting parameter 
values. This is a computer-time-intensive process. We run our next pass 
through, cycling the LOC parameter from .1 to -.1 by -.05, the SCALE 
parameter from 2.6 to 2.8 by .05, the SKEW parameter from .1 to -.1 by 
-.05, and the KURT parameter from 1.86 to 1.92 by .02. The results of 
this cycle through give the optimal (lowest K-S statistic) at LOC = 0, 
SCALE = 2.8, SKEW = 0, and KURT = 1.86. 

Thus we perform a third cycle through. This time we run LOC from 
.04 to -.04 by -.02, SCALE from 2.76 to 2.82 by .02, SKEW from .04 to 
-.04 by -.02, and KURT from 1.8 to 1.9 by .02. The results of the third 
cycle through show optimal values at LOC = .02, SCALE = 2.76, 
SKEW = 0, and KURT = 1.8. 

Now we have zeroed right in on the optimal neighborhood, the areas 
where the parameters make for the best fit of our adjustable characteris-
tic function to the actual data. For our last cycle through we are going to 
run LOC from 0 to .03 by .01, SCALE from 2.76 to 2.73 by -.01, SKEW 
from ,01 to -.01 by -.01, and KURT from 1.8 to 1.75 by -.01. The results 
of this final pass show optimal parameters for our 232 trades at LOC = 
.02, SCALE = 2.76, SKEW = 0, and KURT = 1.78. 

USING THE PARAMETERS TO FIND OPTIMAL F 
Now that we have found the best-fitting parameter values, we can 

find the optimal f on this distribution. We can take the same procedure 
we used to find the optimal f on the Normal Distribution discussed in 
the last chapter. The only difference now is that the associated probabili-
ties for each standard value (X value) are calculated per the procedure 

described for Equations (4.06) and (4.12). With the Normal Distribution, 
we find our associated probabilities column (probabilities corresponding 
to a certain standard value) by using Equation (3.21). Here, to find our 
associated probabilities, we must follow the procedure detailed previ-
ously: 
1. For a given standard value, X, we figure its corresponding N'(X) by 
Equation (4.06). 
2. For each standard value, we also have the interim step of keeping a 
running sum of the N'(X) 's corresponding to each value of X. 
3. Now, to find N(X), the resultant probability for a given X, add 
together the running sum corresponding to the X value with the running 
sum corresponding to the previous X value. Divide this sum by 2. Then 
divide this quotient by the sum total of the N'(X)'s, the last entry in the 
column of running sums. This new quotient is the associated 1- tailed 
probability for a given X. 

Since we now have a procedure to find the associated probabilities 
for a given standard value, X, for a given set of parameter values, we 
can find our optimal f. The procedure is exactly the same as that detailed 
for finding the optimal f on the Normal Distribution. The only differ-
ence is that we calculate the associated probabilities column differently. 

In our 232-trade example, the parameter values that result in the 
lowest K-S statistic are .02, 2.76, 0, and 1.78 for LOC, SCALE, SKEW, 
and KURT respectively. We arrived at these parameter values by using 
the optimization procedure outlined in this chapter. This resulted in a K-
S statistic of .0835529 (meaning that at its worst point, the two distribu-
tions were apart by 8.35529%), and a significance level of 7.8384%. 
Figure 4-10 shows the distribution function for those parameter values 
that best fit our 232 trades. 
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Figure 4-10 Adjustable distribution fit to the 232 trades. 

If we take these parameters and find the optimal f on this distribu-
tion, bounding the distribution from +3 to -3 sigmas and using 100 
equally spaced data points, we arrive at an optimal f value of .206, or 1 
contract for every $23,783.17. Compare this to the empirical method, 
which showed that optimal growth is obtained at 1 contract for every 
$7,918.04 in account equity. 

But that is the result we get if we bound the distribution at 3 sigmas 
either side of the mean. In reality, in the empirical stream of trades, we 
had a worst-case loss of 2.96 sigmas and a best-case gain of 6.94 sig-
mas. Now if we go back and bound our distribution at 2.96 sigmas on 
the left (negative side) of the mean and 6.94 on the right (and we'll use 
300 equally spaced data points this time), we obtain an optimal f of .954 
or 1 contract for every $5,062.71 in account equity. Why does this differ 
from the empirical optimal f of $7,918.04? 

The difference is in the "roughness" of the actual distribution. Re-
call that the significance level of our best-fitting parameters was only 
7.8384%. Let us take our 232-trade distribution and bin it into 12 bins 
from -3 to +3 sigmas. 
 Bin Number of Trades  
-3.0 -2.5 2  
-2.5 -2.0 1  
-2.0 -1.5 2  
-1.5 -1.0 24  
-1.0 -0.5 39  
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-0.5  0.0  43  
0.0  0.5  69  
0.5  1.0  38  
1.0  1.5  7  
1.5  2.0  2  
2.0  2.5  0  
2.5  3.0  2  

Notice that out on the tails of the distribution are gaps, areas or bins 
where there isn't any empirical data. These areas invariably get 
smoothed over when we fit our adjustable distribution to the data, and it 
is these smoothed-over areas that cause the difference between the pa-
rametric and the empirical optimal fs. Why doesn't our distribution fit 
the observed better, especially in light of how malleable it is? The rea-
son has to do with the observed distribution having too many pointy of 
inflection. 

A parabola can be cupped upward or downward. Yet over the extent 
of a parabola, the direction of the cup, whether it points upward or 
downward, is unchanged. We define a point of inflection as any time the 
direction of the concavity changes from up to down. Therefore, a parab-
ola has 0 points of inflection, since the direction of the concavity never 
changes. An object shaped like the letter S lying on its side has one 
point of inflection, one point where the concavity changes from up to 
down. 

Points of inflection

Concave Down

Concave Up Concave Up

 
Figure 4-11 Points of inflection on a bell-shaped distribution. 

Figure 4-11 shows the Normal Distribution. Notice there are two 
points of inflection in a bell-shaped curve such as the Normal Distribu-
tion. Depending on the value for SCALE, our adjustable distribution can 
have n zero points of inflection (if SCALE is very low) or two points of 
inflection. The reason our adjustable distribution does not fit the actual 
distribution of trades any better than it does is that the actual distribution 
has too many Points of inflection. 

Does this mean that our fitted adjustable distribution is wrong? 
Probably not. If we were so inclined, we could create a distribution 
function that allowed for more than two points of inflection, which 
would better curve-fit to the actual observed distribution. If we created a 
distribution function that allowed for as many points of inflection as we 
desired, we could fit to the observed distribution perfectly. Our optimal f 
derived therefrom would • then be nearly the same as the empirical. 
However, the more points of inflection we were to add to our distribu-
tion function, the less robust it would be (i.e., it would probably be less 
representative of the trades in the future). 

However, we are not trying to fit the parametric f to the observed 
exactly. We are trying to determine how the observed data is distributed 
so that we can determine with a fair degree of accuracy what the optimal 
fin the future will be if the data is distributed as it were in the past. 
When we look at the adjustable distribution that has been fit to our ac-
tual trades, the spurious points of inflection are removed. 

An analogy may clarify this. Suppose we are using Galton's board. 
We know that asymptotically the distribution of the balls falling through 
the board will be Normal. However, we are only going to see 4 balls 
rolled through the board. Can we expect the outcomes of the 4 balls to 
be perfectly conformable to the Normal? How about 5 balls? 50 balls? 

In an asymptotic sense, we expect the observed distribution to flesh 
out to the expected as the number of trades increases. Fitting our theo-
retical distribution to every point of inflection in the actual will not give 
us any greater degree of accuracy in the future. As more trades occur, 
we can expect the observed distribution to converge toward the ex-

pected, as we can expect the extraneous points of inflection to be filled 
in with trades as the number of trades approaches infinity. If the process 
generating the trades is accurately modeled by our parameters, the opti-
mal f derived from the theoretical will be more accurate over the future 
sequence of trades than the optimal f derived empirically over the past 
trades. 

In other words, if our 232 trades are a proxy of the distribution of 
the trades in the future, then we can expect the trades in the future to 
arrive in a distribution more like the theoretical one that we have fit than 
like the observed with its extraneous points of inflection and its rough-
ness due to not having an infinite number of trades. In so doing, we can 
expect the optimal fin the future to be more like the optimal f obtained 
from the theoretical distribution than it is like the optimal f obtained 
empirically over the observed distribution. 

So, we are better off in this case to use the parametric optimal f 
rather than the empirical. The situation is analogous to the 20-coin-toss 
discussion of the previous chapter. If we expect 60% wins at a 1:1 pay-
off, the optimal f is correctly .2. However, if we only had empirical data 
of the last 20 tosses, 11 of which were wins, our optimal f would show 
as .1, even though ,2 is what we should optimally bet on the next toss 
since it has a 60% chance of winning. We must assume that the para-
metric optimal f ($5,062.71 in this case) is correct because it is the op-
timal f on the generating function. As with the coin-toss game just men-
tioned, we must assume that the optimal f for the next trade is deter-
mined parametrically by the generating function, even though this may 
differ from the empirical optimal f. 

Obviously, the bounding parameters have a very important effect on 
the optimal f. Where should you place the bounding parameters so as to 
obtain the best results? Look at what happens as we move the upper 
bound up. The following table is compiled by bounding the lower end at 
3 sigmas, and using 100 equally spaced data points and the optimal pa-
rameters to our 232 trades: 
Upper Bound f  f$  
3 Sigmas  .206 $23783.17  
4 Sigmas  .588 $8,332.51  
5 Sigmas  .784 $6,249.42  
6 Sigmas  .887 $5,523.73  
7 Sigmas  .938 $5,223.41  
8 Sigmas  .963 $5,087.81  
100 Sigmas  .999 $4,904.46  

Notice that, keeping the lower bound constant, the higher up we 
move the higher bound, the more the optimal f approaches 1. Thus, the 
more we move the upper bound up, the more the optimal f in dollars will 
approach the lower bound (worst-case expected loss) exactly. In this 
case, where our lower bound is at -3 sigmas, the more we move the 
upper bound up, the more the optimal f in dollars will approach the 
lower bound as a limit-$330.13-(1743.23*3) = -$4,899.56. 

Now observe what happens when we keep the upper bound constant 
(at 3), but move the lower bound lower. Very soon into this process the 
arithmetic mathematical expectation turns negative. This happens be-
cause more than 50% of the area under the characteristic function is to 
the left of the zero axis. Consequently, as we move the lower bounding 
parameter lower, the optimal f quickly goes to zero. 

Now consider what happens when we move both bounding parame-
ters out at the same rate. Here we are using the optimal parameter set of 
.02, 2.76, 0, and 1.78 on our distribution of 232 trades, and 100 equally 
spaced data points: 
Upper and Lower Bound f  f$  
3 Sigmas  .206 $23,783.17  
4 Sigmas  .158 $42,040.42  
5 Sigmas  ,126 $66,550.75  
6 Sigmas  .104 $97,387.87  
10 Sigmas  .053 $322,625.17  

Notice that our optimal f approaches 0 as we move both bounding 
parameters out to plus and minus infinity. Furthermore, since our worst-
case loss gets greater and greater, and gets divided by a smaller and 
smaller optimal f, our f$, the amount to finance 1 unit by, approaches 
infinity as well. 

The problem of where the best place is to put the bounding parame-
ters is best rephrased as, "Where, in the extreme case, do we expect the 
best and worst trades in the future (over the course of which we are 
going to trade this market system) to occur?" The tails of the distribution 
itself actually go to plus and minus infinity. To account for this we 
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would optimally finance each contract by an infinitely high amount (as 
in our last example, where we moved both bounds outward). If we were 
going to trade for an infinitely long time into the future, our optimal f in 
dollars would be infinite. But we're not going to trade this market sys-
tem forever. The optimal f in the future over which we are going to trade 
this market system is a function of what the best and worst trades in that 
future are. 

Recall that if we flip a coin 100 times and record what the longest 
streak of consecutive tails is, then flip the coin another 100 times, the 
longest streak of consecutive tails at the end of 200 flips will more than 
likely be greater than it was after only the first 100 flips. Similarly, if the 
worst-case loss seen over our 232-trade history was a 2.96-sigma loss 
(let's say a 3-sigma loss) then we should expect a loss of greater than 3 
sigmas in the future over which we are going to trade this market sys-
tem. Therefore, rather than bounding our distribution at what the bounds 
of the past history of trades were (-2.96 and +6.94 sigmas), we will 
bound it at -4 and +6.94 sigmas. We should perhaps expect the high-end 
bound to be violated in the future, much as we expect the low-end 
bound to be violated. However, we won't make this assumption for a 
couple of reasons. The first is that trading systems notoriously do not 
trade as well into the future, in general, as they have over historical data, 
even when there are no optimizable parameters involved. It gets back to 
the principle that mechanical trading systems seem to suffer from a con-
tinually deteriorating edge. Second, the fact that we pay a lesser penalty 
for erring in optimal f if we err to the left of the peak of the f curve than 
if we err to the right of it suggests that we should err on the conservative 
side in our prognostications about the future. 

Therefore, we will determine our parametric optimal f by using the 
bounding parameters of -4 and +6.94 sigmas and use 300 equally spaced 
data points. However, in calculating the probabilities at each of the 300 
equally spaced data points, it is important that we begin our distribution 
2 sigmas before and after our selected bounding parameters. We there-
fore determine the associated probabilities by creating bars from -6 to 
+8.94 sigmas, even though we are only going to use the bars between -4 
and +6.94 sigmas. In so doing, we have enhanced the accuracy of our 
results. 

Using our optimal parameters of .02, 2.76, 0, and 1.78 now yields 
an optimal f of .837, or 1 contract per every $7,936.41. 

So long as our selected bounding parameters are not violated, our 
model of reality is accurate in terms of the bounds selected. That is, so 
long as we do not see a loss greater than 4 sigmas-$330.13-(1743.23*4) 
= -$6,642.79-or a profit greater than 6.94 sigmas-
$330.13+(1743.23*6.94) = $12,428.15-we have accurately modeled the 
bounds of the distribution of trades in the future. 

The possible divergence between our model and reality is our blind 
spot. That is, the optimal f derived from our model (with our selected 
bounding parameters) is the optimal f for our model, not necessarily for 
reality. If our selected bounding parameters are violated in the future, 
our selected optimal f cannot then be the optimal. We would be smart to 
defend this blind spot with techniques, such as long options, that limit 
our liability to a prescribed amount. 

While we are discussing weaknesses with the method, one final 
weakness should be pointed out. Once you have obtained your paramet-
ric optimal f, you should be aware that the actual distribution of trade 
profits and losses is one in which the parameters are constantly chang-
ing, albeit slowly. You should frequently run the technique on your 
trade profits and losses for each market system you are trading to moni-
tor these dynamics of the distributions. 

PERFORMING "WHAT IFS" 
Once you have obtained your parametric optimal f, you can perform 

"What If types of scenarios on your distribution function by altering the 
parameters LOC, SCALE, SKEW, and KURT of the distribution func-
tion to replicate different expected outcomes in the near future (different 
distributions the future might take) and observe the effects. Just as we 
can tinker with stretch and shrink on the Normal distribution, so, too, 
can we tinker with the parameters LOC, SCALE, SKEW, and KURT of 
our adjustable distribution. 

The "What if capabilities of the parametric technique are the 
strengths that help to offset the weaknesses of the actual distribution of 
trade P&L's moving around. The parametric techniques allow us to see 

the effects of changes in the distribution of actual trade profits and 
losses before they occur, and possibly to budget for them. 

When tinkering with the parameters, a suggestion is in order. When 
finding the optimal f, rather than tinkering with the LOC, the location 
parameter, you are better off tinkering with the arithmetic average trade 
in dollars that you are using as input. The reason is illustrated in Figure 
4-12. 

As is

Altering shrink or 
average trade

Altering the 
location 

parameter  
Figure 4-12 Altering location parameters. 

Notice that in Figure 4-12, changing the location parameter LOC 
moves the distribution right or left in the "window" of the bounding 
parameters. But the bounding parameters do not move with the distribu-
tion. Thus, a change in the LOC parameter also affects how many 
equally spaced data points will be left of the mode and right of the mode 
of the distribution. By changing the actual arithmetic mean (or using the 
shrink variable in the Normal Distribution search for f), the window of 
the bounding parameters moves also. When you alter the arithmetic 
average trade as input, or alter the shrink variable in the Normal Distri-
bution mechanism, you still have the same number of equally spaced 
data points to the right and left of the mode of the distribution that you 
had before the alteration. 

EQUALIZING F 
The technique detailed in this chapter was shown using data that 

was not equalized. We can also use this very same technique on equal-
ized data. If we want to determine an equalized parametric optimal f, we 
would convert the raw trade profits and losses over to percentage gains 
and losses, based on Equations (2.10a) through (2.10c). Next, we would 
convert these percentage profits and losses by multiplying them by the 
current price of the underlying instrument. For example, P&L number 1 
is .18. Suppose the entry price to this trade was 100.50. The percentage 
gain on this trade would be .18/100.50 = .001791044776. Now suppose 
that the current price of this underlying instrument is 112.00. Multiply-
ing .001791044776 by 112.00 translates into an equalized P&L of 
.2005970149. 

If we were seeking to do this procedure on an equalized basis, we 
would perform this operation on all 232 trade profits and losses. We 
would then calculate the arithmetic mean and population standard devia-
tion on the equalized trades and would use Equation (3.16) to standard-
ize the trades. Next, we could find the optimal parameter set for LOC, 
SCALE, SKEW, and KURT on the equalized data exactly as was shown 
in this chapter for nonequalized data. 

The rest of the procedure is the same in this chapter in terms of de-
termining the optimal f, geometric mean, and TWR. The by-products of 
the geometric average trade, arithmetic average trade, and threshold to 
the geometric are only valid for the current price of the underlying in-
strument. When the price of the underlying instrument changes, the 
procedure must be done again, going back to step one and multiplying 
the percentage profits and losses by the new underlying price. When you 
go to redo the procedure with a different underlying price, you will ob-
tain the same optimal f, geometric mean, and TWR. However, your 
arithmetic average trade, geometric average trade, and threshold to the 
geometric will be different based upon the new price of the underlying 
instrument. 

The number of contracts to trade as given in Equation (3.34) must 
be changed. The worst-case associated P&L, the W variable, Equation 
(3.35), will be different in Equation (3.34) as a result of the changes 
caused in the equalized data by a different current price. 
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OPTIMAL F ON OTHER DISTRIBUTIONS AND FITTED 
CURVES 

At this point you should realize that there are many other ways you 
can determine your parametric optimal f. We have covered a procedure 
for finding the optimal f on Normally distributed data in the previous 
chapter. Thus we have a procedure that will give us the optimal f for any 
Normally distributed phenomenon. That same procedure can be used to 
find the optimal on data of any distribution, so long as the cumulative 
density function of the selected distribution is available (these func-
tions arc given for many other common distributions in Appendix B). 
When the cumulative density function is not available, the optimal f 
can be found for any other function by the integration method used in 
this chapter to approximate the cumulative densities, the areas under 
the curve. 

I have elected in this chapter to model the actual distribution of 
trades by way of our adjustable distribution. This amounts to little more 
than finding a function and its appropriate values, which model the ac-
tual density function of the trade P&L's with a maximum of 2 points of 
inflection. You could use or create many other functions and methods to 
do this-such as polynomial interpolation and extrapolation, rational 
function (quotients of polynomials) interpolation and extrapolation, or 
using splines to fit a theoretical function to the actual. Once any theo-
retical function is found, the associated probabilities can be determined 
by the same method of integral estimation as was used in finding the 
associated probabilities of our adjustable distribution or by using inte-
gration techniques of calculus. 

There is a problem with fitting any of these other functions. Part of 
the thrust of this book has been to allow users of systems that are not 
purely mechanical to have the same account management power that 
users of purely mechanical systems have. As such, the adjustable distri-
bution route that I took only requires estimates for the parameters. These 
parameters pertain to the first four moments of the distribution. It is 
these moments -location, scale, skewness, and kurtosis-that describe the 
distribution. Thus, someone trading on some not purely mechanical 
basis-e.g., Elliott wave— could estimate the parameters and have access 
to optimal f and its by-product calculations. A past history of trades is 
not a prerequisite for estimating these parameters. If you were to use any 
of the other fitting techniques mentioned, you wouldn't necessarily need 
a past history of trades either, but the estimates for the parameters of 
those fitting techniques do not necessarily pertain to the moments of the 
distribution. What they pertain to is a function of the particular function 
you are using. These other techniques would not necessarily allow you 
to see what would happen if kurtosis increased or skewness changed or 
the scale were altered, and so on. Our adjustable distribution is the logi-
cal choice for a theoretical function to fit to the actual, since the parame-
ters not only measure the moments of the distribution, they give us con-
trol over those moments when prognosticating about future changes to 
the distribution. Furthermore, estimating the parameters of our adjust-
able distribution is easier than with fitting any other function which I am 
aware of. 

SCENARIO PLANNING 
People who forecast for a living (economists, stock market forecast-

ers, weathermen, government agencies, etc.) have a notorious history for 
incorrect forecasts, but most decisions anyone must make in life usually 
require making a forecast about the future. 

A couple of pitfalls immediately crop up here. To begin with, peo-
ple generally make assumptions about the future that are more optimis-
tic than the actual probabilities. Most people feel that they arc far more 
likely to win the lottery this month than they are to die in an auto acci-
dent, even though the probabilities of the latter are greater. This is not 
only true on the level of the individual, it is even more pronounced at 
the level of the group. When people work together, they tend to see a 
favorable outcome as the most likely result (everyone else seems to, 
otherwise they wouldn't be working here), otherwise they would quit the 
project they are a part of (unless, of course, we have all become automa-
tons mindlessly slaving away on sinking ships). 

The second and more harmful pitfall is that people make straight-
line forecasts into the future. People try to predict the price of a gallon 
of gas two years from now, predict what will happen with their jobs, 
who will be the next president, what the next styles will be, and on and 
on. Whenever we think of the future, we tend to think in terms of a sin-

gle, most likely outcome. As a result, whenever we must make deci-
sions, whether as an individual or a group, we tend to make these deci-
sions based on what we think will be the single most likely outcome in 
the future. As a consequence, we are extremely vulnerable to unpleasant 
surprises. 

Scenario planning is a partial solution to this problem. A scenario is 
simply a possible forecast, a story about one way that the future might 
unfold. Scenario planning is a collection of scenarios to cover the spec-
trum of possibilities. Of course, the complete spectrum can never be 
covered, but the scenario planner wants to cover as many possibilities as 
he or she can. By acting in this manner, as opposed to a straight-line 
forecast of the most likely outcome, the scenario planner can prepare for 
the future as it unfolds. Furthermore, scenario planning allows the plan-
ner to be prepared for what might otherwise be an unexpected event. 
Scenario planning is tuned to reality in that it recognizes that certainty is 
an illusion. 

Suppose you are involved in long-run planning for your company. 
Say you make a particular product. Bather than making a single-most-
likely-outcome, straight-line forecast, you decide to exercise scenario 
planning. You Will need to sit down with the other planners and brain-
storm for possible scenarios. What if you cannot get enough of the raw 
materials to make your product? What if one of your competitors fails? 
What if a new competitor emerges? What if you have severely underes-
timated demand for this product? What if a war breaks out on such-and-
such a continent? What if it is a nuclear war? Because each scenario is 
only one of several, each scenario can be considered seriously. But what 
do you do once you have defined these scenarios? 

To begin with, you must determine what goal you would like to 
achieve for each given scenario. Depending upon the scenario, the goal 
need not be a positive one. For instance, under a bleak scenario your 
goal may simply be damage control. Once you have defined a goal for a 
given scenario, you then need to draw up the contingency plans pertain-
ing to that scenario to achieve the desired goal. For instance, in the 
rather unlikely bleak scenario where your goal is damage control, you 
need to have plans formulated so that you can minimize the damage. 
Above all else, scenario planning provides the planner with a course of 
action to take should a certain scenario develop. It forces you to make 
plans before the fact; it forces you to be prepared for the unexpected. 

Scenario planning can do a lot more, however. There is a hand-in-
glove fit between scenario planning and optimal f. Optimal fallows us to 
determine the optimal quantity to allocate to a given set of possible sce-
narios. We can exist in only one scenario at a time, even though we are 
planning for multiple futures (multiple scenarios). Scenario planning 
puts us in a position where we must make a decision regarding how 
much of a resource to allocate today given the possible scenarios of 
tomorrow. This is the true heart of scenario planning-quantifying it. 

We can use another parametric method for optimal f to determine 
how much of a certain resource to allocate given a certain set of scenar-
ios. This technique will maximize the utility obtained in an asymptotic 
geometric sense. First, we must define each unique scenario. Second, we 
must assign a number to the probability of that scenario's occurrence. 
Being a probability means that this number is between 0 and 1. Scenar-
ios with a probability of 0 we need not consider any further. Note that 
these probabilities are not cumulative. In other words, the probability 
assigned to a given scenario is unique to that scenario. Suppose we are a 
decision maker for XYZ Manufacturing Corporation. Two of the many 
scenarios we have are as follows. In one scenario XYZ Manufacturing 
files for bankruptcy, with a probability of .15; in the other scenario XYZ 
is being put out of business by intense foreign competition, with a prob-
ability of .07. Now, we must ask if the first scenario, filing for bank-
ruptcy, includes filing for bankruptcy due to the second scenario, intense 
foreign competition. If it does, then the probabilities in the first scenario 
have not taken the probabilities of the second scenario into account, and 
we must amend the probabilities of the first scenario to be .08 (.15-.07). 
Note also that just as important as the uniqueness of each probability to 
each scenario is that the sum of the probabilities of all of the scenarios 
we are considering must equal 1 exactly, not 1.01 nor .99, but 1. 

For each scenario we now have assigned a probability of just that 
scenario occurring. We must also assign an outcome result. This is a 
numerical value. It can be dollars made or lost as a result of a scenario 
manifesting itself, it can be units of utility, medication, or anything. 
However, our output is going to be in the same units that we put in as 
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input. You must have at least one scenario with a negative outcome in 
order to use this technique. 

This is mandatory. Since we are trying to answer the question "How 
much of this resource should we allocate today given the possible sce-
narios of tomorrow?", if there is not a negative outcome scenario, then 
we should allocate 100% of this resource. Further, without a negative 
outcome scenario it is questionable how tuned to reality this set of sce-
narios really is. 

A last prerequisite to using this technique is that the mathematical 
expectation, the sum of all of the outcome results times their respective 
probabilities, must be greater than zero. 
(1.03) ME = ∑[i = 1,N] (Pi *Ai) 

where 
Pi = The probability associated with the ith scenario. 
Ai = The result of the ith scenario. 
N = The total number of scenarios under consideration. 
If the mathematical expectation equals zero or is negative, the fol-

lowing technique cannot be used. That's not to say that scenario plan-
ning itself cannot be used. It can and should. However, optimal f can 
only be incorporated with scenario planning when there is a positive 
mathematical expectation. When the mathematical expectation is zero or 
negative, we ought not allocate any of this resource at this time. 

Lastly, you must try to cover as much of the spectrum of outcomes 
as possible. In other words, you really want to account for 99% of the 
possible outcomes. This may sound nearly impossible, but many scenar-
ios can be made broader so that you don't need 10,000 scenarios to 
cover 99% of the spectrum. In making your scenarios broader, you must 
avoid the common pitfall of three scenarios: an optimistic one, a pessi-
mistic one, and a third where things remain the same. This is too simple, 
and the answers derived therefrom are often too crude to be of any 
value. Would you want to find your optimal f for a trading system based 
on only three trades? 

So even though there may be an unknowably large number of sce-
narios covering the entire spectrum, we can cover what we believe to be 
about 99% of the spectrum of outcomes. If this makes for an unman-
ageably large number of scenarios, we can make the scenarios broader 
to trim down their number. However, by trimming down their number 
we lose a certain amount of information. When we trim down the num-
ber of scenarios (by broadening them) down to only three, a common 
pitfall, we have effectively eliminated so much information that this 
technique is severely hampered in its effectiveness. 

What is a good number of scenarios to have then? As many as you 
can and still manage them. Here, a computer is a great asset. Assume 
again that we are decision making for XYZ. We are looking at market-
ing a new product of ours in a primitive, remote little country. We are 
looking at five possible scenarios (in reality you should have many more 
than this, but we'll use five for the sake of illustration). These five sce-
narios portray what we perceive as possible futures for this primitive 
remote country, their probabilities of occurrence, and the gain or loss of 
investing there. 
Scenario  Probability  Result  
War  .1  -$500,000  
Trouble  .2  -$200,000  
Stagnation  .2  0  
Peace  .45  $500,000  
Prosperity  .05  $1 ,000,000 
 Sum 1.00   

The sum of our probabilities equals 1. We have at least 1 scenario 
with a negative result, and our mathematical expectation is positive: 
(.1*-$500,000)+(.2*-$200,000)+.. = $185,000 

We can therefore use the technique on this set of scenarios. 
Notice first, however, that if we used the single most likely outcome 

method we would conclude that peace will be the future of this country, 
and we would then act as though peace was to occur, as though it were a 
certainty, only vaguely remaining aware of the other possibilities. 

Returning to the technique, we must determine the optimal f. The 
optimal f is that value for f (between 0 and 1) which maximizes the 
geometric mean: 
(4.13) Geometric mean = TWR^(1/∑[i = 1,N] Pi) 

and 

(4.14) TWR = ∏[i = 1,N] HPRi 
and 

(4.15) HPRi = (1+(Ai/(W/-f))) ^ Pi therefore 
(4.16) Geometric mean = (∏[i = 1,N] (1+(Ai/(W/-f))) ^ Pi) ^ (1/∑[i = 
1,N] Pi) Finally then, we can compute the real TWR as: 
(4.17) TWR = Geometric Mean ^ X 

where 
N = The number of different scenarios. 
TWR = The terminal wealth relative. 
HPRi = The holding period return of the ith scenario. 
Ai = The outcome of the ith scenario. 
Pi = The probability of the ith scenario. 
W = The worst outcome of all N scenarios. 
f = The value for f which we are testing. 
X = However many times we want to "expand" this scenario out. 

That is, what we would expect to make if we invested f amount into 
these possible scenarios X times. 

The TWR returned by Equation (4.14) is just an interim value we 
must have in order to obtain the geometric mean. Once we have this 
geometric mean, the real TWR can be obtained by Equation (4.17). 

Here is how to perform these equations. To begin with, we must de-
cide on an optimization scheme, a way of searching through the f values 
to find that f which maximizes our equation. Again, we can do this with 
a straight loop with f from .01 to 1, through iteration, or through para-
bolic interpolation. Next, we must determine what the worst possible 
result for a scenario is of all of the scenarios we are looking at, regard-
less of how small the probabilities of that scenario's occurrence are. In 
the example of XYZ Corporation this is -$500,000. Now for each possi-
ble scenario, we must first divide the worst possible outcome by nega-
tive f. In our XYZ Corporation example, we will assume that we are 
going to loop through f values from .01 to 1. Therefore we start out with 
an f value of .01. Now, if we divide the worst possible outcome of the 
scenarios under consideration by the negative value for f: 
-$500,000/-.01 = $50,000,000 

Negative values divided by negative values yield positive results, so 
our result in this case is positive. As we go through each scenario, we 
divide the outcome of the scenario by the result just obtained. Since the 
outcome to the first scenario is also the worst scenario, a loss of 
$500,000, we now have: 
-$500,000/$50,000,000 = -.01 

The next step is to add this value to 1. This gives us: l+(-.01) = .99 
Lastly, we take this answer to the power of the probability of its oc-

currence, which in our example is .1: 
.99^.1 = .9989954713 

Next, we go to the next scenario labeled 'Trouble," where there is a 
.2 probability of a loss of $200,000. Our worst-case result is still -
$500,000. The f value we are working on is still .01, so the value we 
want to divide this scenario's result by is still $50,000,000: 
-$200,000/$50,000,000 = -.004 

Working through the rest of the steps to obtain our HPR: 
1+(-.004) = .996 
.996^.2 = .9991987169 

If we continue through the scenarios for this test value of .01 for f, 
we will find the 3 HPRs corresponding to the last 3 scenarios: 

Stagnation 1.0 
Peace 1.004467689 
Prosperity 1.000990622 
Once we have turned each scenario into an HPR for the given f 

value, we must multiply these HPRs together: 
.9989954713*.9991987169*1.0*1.004487689*1.000990622 = 
1.00366'7853 

This gives us the interim TWR, which in this case is 1.003667853. 
Our next step is to take this to the power of 1 divided by the sum of the 
probabilities. Since the sum of the probabilities is 1, we can state that we 
must raise the TWR to the power of 1 to give us the geometric mean. 
Since anything raised to the power of 1 equals itself, we can say that our 
geometric mean equals the TWR in this case. We therefore have a geo-



- 59 - 

metric mean of 1.003667853. If, however, we relaxed the constraint that 
each scenario must have a unique probability, then we could allow the 
sum of the probabilities of the scenarios to be greater than 1. In such a 
case, we would have to raise our TWR to the power of 1 divided by this 
sum of the probabilities in order to derive the geometric mean. 

The answer we have just obtained in our example is our geometric 
mean corresponding to an f value of .01. Now we move on to an f value 
of .02, and repeat the whole process until we have found the geometric 
mean corresponding to an f value of .02. We keep on proceeding until 
we arrive at that value for f which yields the highest geometric mean. 

In our example we find that the highest geometric mean is obtained 
at an f value of .57, which yields a geometric mean of 1.1106. Dividing 
our worst possible outcome to a scenario (-$500,000) by the negative 
optimal f yields a result of $877,192.35. In other words, if XYZ Corpo-
ration wants to commit to marketing this new product in this remote 
country, they will optimally commit this amount to this venture at this 
time. As time goes by and things develop, so do the scenarios, and as 
their resultant outcomes and •probabilities change, so does this f amount 
change. The more XYZ Corporation keeps abreast of these changing 
scenarios, and the more accurate the scenarios they develop as input are, 
the more accurate their decisions will be. Note that if XYZ Corporation 
cannot commit this $877,192.35 to this undertaking at this time, then 
they are too far beyond the peak of the f curve. It is the equivalent to the 
trader who has too many commodity contracts on with respect to what 
the optimal f says he or she should have on. If XYZ Corporation com-
mits more than this amount to this project at this time, the situation 
would be analogous to a commodity trader with too few contracts on. 

Furthermore, although the quantity discussed here is a quantity of 
money, it could be a quantity of anything and the technique would be 
just as valid. The approach can be used for any quantitative decision in 
an environment of favorable uncertainty. 

If you create different scenarios for the stock market, the optimal f 
derived from this methodology will give you the correct percentage to 
be invested in the stock market at any given time. For instance, if the f 
returned is .65, then that means that 65% of your equity should be in the 
stock market with the remaining 35% in, say, cash. This approach will 
provide you with the greatest geometric growth of your capital in the 
long run. Of course, again, the output is only as accurate as the input 
you have provided the system with in terms of scenarios, their probabili-
ties of occurrence, and resultant payoffs and costs. Furthermore, recall 
that everything said about optimal f applies here, and that also means 
that the expected drawdowns will approach a 100% equity retracement. 
If you exercise this scenario planning approach to asset allocation, you 
can expect close to 100% of the assets allocated to the endeavor in ques-
tion to be depleted at any one time in the future. For example, suppose 
you arc using this technique to determine what percentage of investable 
funds should be in the stock market and what percentage should be in a 
risk-free asset. Assume that the answer is to have 65% invested in the 
stock market and the remaining 35% in the risk-free asset. You can ex-
pect the drawdowns in the future to approach 100% of the amount allo-
cated to the stock market. In other words, you can expect to see, at some 
point in the future, almost 100% of your entire 65% allocated to the 
stock market to be gone. Yet this is how you will achieve maximum 
geometric growth. 

This same process can be used as an alternative parametric tech-
nique for determining the optimal f for a given trade. Suppose you are 
making your trading decisions based on fundamentals. If you wanted to, 
you could outline the different scenarios that the trade may take. The 
more scenarios, and the more accurate the scenarios, the more accurate 
your results would be. Say you are looking to buy a municipal bond for 
income, but you're not planning on holding the bond to maturity. You 
could outline numerous different scenarios of how the future might un-
fold and use these scenarios to determine how much to invest in this 
particular bond issue. 

This concept of using scenario planning to determine the optimal f 
can be used for everything from military strategies to deciding the opti-
mal level to participate in an underwriting to the optimal down payment 
on a house. 

For our purposes, this technique is perhaps the best technique, and 
certainly the easiest to employ for someone not using a mechanical 
means of entering and exiting the markets. Those who trade on funda-
mentals, weather patterns, Elliott waves, or any other approach that 

requires a degree of subjective judgment, can easily discern their opti-
mal fs with this approach. This approach is easier than determining dis-
tributional parameter values. 

The arithmetic average HPR of a group of scenarios can be com-
puted as: 
(4.18) AHPR = (∑[i = 1,N](1+(Ai/(W/-f)))*Pi)∑[i = 1,N]Pi 

where 
N = the number of scenarios. 
f = the f value employed. 
Ai = the outcome (gain or loss) associated with the ith scenario. 
Pi = the probability associated with the ith scenario. 
W = the most negative outcome of all the scenarios. 
The AHPR will be important later in the text when we will need to 

discern the efficient frontier of numerous market systems. We will need 
to determine the expected return (arithmetic) of a given market system. 
This expected return is simply AHPR-1. 

The technique need not be applied parametrically, as detailed here; 
it can also be applied empirically. In other words, we can take the trade 
listing of a given market system and use each of those trades as a sce-
nario that might occur in the future, the profit or loss amount of the trade 
being the outcome result of the given scenario. Each scenario (trade) 
would have an equal probability of occurrence-1/N, where N is the total 
number of trades (scenarios). This will give us the optimal f empirically. 
This technique bridges the gap between the empirical and the paramet-
ric. There is not a fine line that delineates the two schools. As you can 
see, there is a gray area. 

When we are presented with a decision where there is a different set 
of scenarios for each facet of the decision, selecting the scenario whose 
geometric mean corresponding to its optimal f is greatest will maximize 
our decision in an asymptotic sense. Often this flies in the face of con-
ventional decision-making rules such as the Hutwicz rule, maximax, 
minimax, minimax regret, and greatest mathematical expectation. 

For example, suppose we must decide between two possible 
choices. We could have many possible choices, but for the sake of sim-
plicity we choose two, which we call "white" and "black." If we select 
the decision labeled "white," we determine that it will present the possi-
ble future scenarios to us: 
White Decision  
Scenario Probability Result  
A  .3  -20  
B  .4  0  
C  .3  30  
Mathematical expectation = $3.00 
Optimal f = .17 
Geometric mean = 1 .0123  

It doesn't matter what these scenarios are, they can be anything, and 
to further illustrate this they will simply be assigned letters, A, B, C in 
this discussion. Further, it doesn't matter what the result is, it can be just 
about anything. 

The Black decision will present the following scenarios: 
Black Decision  
Scenario Probability Result  
A  .3  -10  
B  .4  5  
C  .15  6  
D  .15  20  
Mathematical expectation = $2.90 
Optimal f = .31 
Geometric mean = 1.0453 

Many people would opt for the white decision, since it is the deci-
sion with the higher mathematical expectation. With the white decision 
you can expect, "on average," a $3.00 gain versus black's $2,90 gain. 
Yet the black decision is actually the correct decision, because it results 
in a greater geometric mean. With the black decision, you would expect 
to make 4.53% (1.0453-1) "on average" as opposed to white's 1.23% 
gain. When you Consider the effects of reinvestment, the black decision 
makes more than three times as much, on average, as does the white 
decision! 

"Hold on, pal," you say. "We're not doing this thing over again, 
we're doing it only once. We're not reinvesting back into the same future 
scenarios here. Won't we come out ahead if we always select the highest 
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arithmetic mathematical expectation for each set of decisions that pre-
sent themselves this way to us?" 

The only time we want to be making decisions based on greatest 
arithmetic mathematical expectation is if we are planning on not rein-
vesting the money risked on the decision at hand. Since, in almost every 
case, the money risked on an event today will be risked again on a dif-
ferent event in the future, and money made or lost in the past affects 
what we have available to risk today (i.e., an environment of geometric 
consequences), we should decide based on geometric mean to maximize 
the long-run growth of our money. Even though the scenarios that pre-
sent themselves tomorrow won't be the same as those of today, by al-
ways deciding based on greatest geometric mean we are maximizing our 
decisions. It is analogous to a dependent trials process such as a game of 
blackjack. Each hand the probabilities change, and therefore the optimal 
fraction to bet changes as well. By always betting what is optimal for 
that hand, however, we maximize our long-run growth. Remember that 
to maximize long-run growth, we must look at the current contest as 
one that expands infinitely into the future. In other words, we must 
look at each individual event as though we were to play it an infinite 
number of times over if we want to maximize growth over many plays 
of different contests. 

As a generalization, whenever the outcome of an event has an effect 
on the outcome(s) of subsequent event(s) we are best off to maximize 
for greatest geometric expectation. In the rare cases where the outcome 
of an went has no effect on subsequent events, we are then best off to 
maximize for greatest arithmetic expectation. Mathematical expectation 
(arithmetic) does not take the variance between the outcomes of the 
different scenarios into account, and therefore can lead to incorrect deci-
sions when reinvestment is considered, or in any environment of geo-
metric consequences. 

Using this method in scenario planning gets you quantitatively posi-
tioned with respect to the possible scenarios, their outcomes, and the 
likelihood of their occurrence. The method is inherently more conserva-
tive than positioning yourself per the greatest arithmetic mathematical 
expectation. equation (3.05) Allowed that the geometric mean is never 
greater than the arithmetic mean. Likewise, this method can never have 
you position yourself (have a greater commitment) than selecting by the 
greatest arithmetic mathematical expectation would. In the asymptotic 
sense, the long-run sense, this is not only a superior method of position-
ing yourself, as it achieves greatest geometric growth, it is also a more 
conservative one than positioning yourself per the greatest arithmetic 
mathematical expectation, which would invariably put you to the right 
of the peak of the f curve. 

Since reinvestment is almost always a fact of life (except on the day 
before you retire1) - that is, you reuse the money that you are using to-
day - we must make today's decision under the assumption that the same 
decision will present itself a thousand times over in order to maximize 
the results of our decision. We must make our decisions and position 
ourselves in order to maximize geometric expectation. Further, since the 
outcomes of most events do in fact have an effect on the outcomes of 
subsequent events, we should make our decisions and position ourselves 
based on maximum geometric expectation. This tends to lead to deci-
sions and positions that arc not always apparently obvious. 

OPTIMAL F ON BINNED DATA 
Now we come to the case of finding the optimal f and its by-

products on binned data. This approach is also something of a hybrid 
between the parametric and the empirical techniques. Essentially, the 
process is almost identical to the process of finding the optimal f on 
different scenarios, only rather than different payoffs for each bin (sce-
nario), we use the midpoint of each bin. Therefore, for each bin we have 

                                                                 
1 There are certain tines when you will want to maximize for greatest arithmetic 
mathematical expectation instead of geometric, Such a case is when an entity is 
operating in a "constant-contract" kind or way and wants to switch over to a 
"fixed fractional" mode of operating at some favorable point in the future. This 
favorable point can be determined as the geometric threshold where the arithme-
tic average trade that is used as input is calculated as the arithmetic mathematical 
expectation (the sum of the outcome of each scenario times its probability of 
occurrence) divided by (he sum of the probabilities of all of the scenarios. Since 
the sum of the probabilities of all of the scenarios usually equals 1, we can state 
that the arithmetic average "trade" is equal to the arithmetic mathematical expec-
tation. 

an associated probability figured as the total number of elements 
(trades) in that bin divided by the total number of elements (trades) in all 
the bins. Further, for each bin we have an associated result of an element 
ending up in that bin. The associated results are calculated as the mid-
point of each bin. 

For example, suppose we have 3 bins of 10 trades. The first bin we 
will define as those trades where the P&L's were -$1,000 to -$100. Say 
there are 2 elements in this bin. The next bin, we say, is for those trades 
which are -$100 to $100. This bin has 5 trades in it. Lastly, the third bin 
has 3 trades in it and is for those trades that have P&L's of $100 to 
$1,000. 
Bin  Bin  Trades Associated Probability  Associated Result  
-1,000 -100  2  .2  -550  
- 100  100  5  .5  0  
100  1,000 3  .3  550  

Now it is simply a matter of solving for Equation (4.16), where each 
bin represents a different scenario. Thus, for the case of our S-bin ex-
ample here, we find that our optimal f is at .2, or 1 contract for every 
$2,750 in equity (our worst-case loss being the midpoint of the first bin, 
or (-$1000+-$100)/2 = -$550). 

This technique, though valid, is also very rough. To begin with, it 
assumes that the biggest loss is the midpoint of the worst bin. This is not 
always the case. Often it is helpful to make a single extra bin to hold the 
worst-case loss. As applied to our 3-bin example, suppose we had a 
trade that was a loss of $1,000. Such a trade would fall into the -$1,000 
to -$100 bin, and would be recorded as -$550, the midpoint of the bin. 
Instead we can bin this same data as follows: 
Bin  Bin  Trades Associated Probability  Associated Result  
-1,000 -1,000 1  .1  -1,000  
-999  -100  1  .1  -550  
-100  100  5  .5  0  
100  1,000 3  .3  550  

Now, the optimal f is .04, or 1 contract for every $25,000 in equity. 
Are you beginning to see how rough this technique is? So, although this 
technique will give us the optimal f for binned data, we can see that the 
loss of information involved in binning the data to begin with can make 
our results so inaccurate as to be useless. If we had more data points and 
more bins to start with, the technique would not be rough at all. In fact, 
if we had infinite data and an infinite number of bins, the technique 
would be exact. (Another way in which this method could be exact is if 
the data in each of the bins equaled the midpoints of their respective 
bins exactly.) 

The other problem with this technique is that the average element in 
a bin is not necessarily the midpoint of the bin. In fact, the average of 
the elements in a bin will tend to be closer to the mode of the entire 
distribution than the midpoint of the bin is. Hence, the dispersion tends 
to be greater with this technique than is the real case. There are ways to 
correct for this, but these corrections themselves can often be incorrect, 
depending upon the shape of the distribution. Again, this problem would 
be alleviated and the results would be exact if we had an infinite number 
of elements (trades) and an infinite number of bins. 

If you happen to have a large enough number of trades and a large 
enough number of bins, you can use this technique with a fair degree of 
accuracy if you so desire. You can do "What if" types of simulations by 
altering the number of elements in the various bins and get a fair ap-
proximation for the effects of such changes. 

WHICH IS THE BEST OPTIMAL F? 
We have now seen that we can find our optimal f from an empirical 

procedure as well as from a number of different parametric procedures 
for both binned and unbinned data. Further, we have seen that we can 
equalize the data as a means of preprocessing, to find what our optimal f 
should be if all trades occurred at the present underlying price. At this 
point you are probably asking for the real optimal f to please stand up. 
Which optimal f is really optimal? 

For starters, the straight (nonequalized) empirical optimal f will give 
you the optimal f on past data. Using the empirical optimal f technique 
detailed in Chapter 1 and in Portfolio Management Formulas will yield 
the optimal f that would have realized the greatest geometric growth on 
a past stream of outcomes. However, we want to discern what the value 
for this optimal f will be in the future (specifically, over the next trade), 
considering that we are absent knowledge regarding the outcome of the 
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next trade. We do not know whether it will be a profit, in which case the 
optimal f would be 1, or a loss, in which case the optimal f would be 0. 
Rather, we can only express the outcome of the next trade as an estimate 
of the probability distribution of outcomes for the next trade. That 
being said, our best estimate for traders employing a mechanical system, 
is most likely to be obtained by using the parametric technique on our 
adjustable distribution function as detailed in this chapter on either 
equalized or nonequalized data. If there is a material difference in using 
equalized versus nonequalized data, then there is most likely too much 
data, or not enough data at the present price level. For non-system trad-
ers, the scenario planning approach is the easiest to employ accurately. 
In my opinion, these techniques will result in the best estimate of the 
probability distribution of outcomes on the next trade. 

You now have a good conception of both the empirical and para-
metric techniques, as well as some hybrid techniques for finding the 
optimal f. In the next chapter, we consider finding the optimal j (pa-
rametrically) when more than one position is running concurrently. 
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Chapter 5 - Introduction to Multiple Simul-
taneous Positions under the Parametric 
Approach 

Mention has already been made in this text of the idea of using 
options, either by themselves or in conjunction with a position in the 
underlying, to improve returns. Buying a long put in conjunction with 
a long position in the underlying (or simply buying a call in lieu of 
both), or sometimes even writing (setting short) a call in conjunction 
with a long position in the underlying can increase asymptotic geo-
metric growth. This happens as the result of incorporating the options 
into the position, which then often (but not always) reduces dispersion 
to a greater degree than it reduces arithmetic average return. Per the 
fundamental equation of trading, this then results in a greater esti-
mated TWR. 

Options can be used in a variety of ways, both among themselves 
and in conjunction with positions in the underlying, to manage risk. 
In the future, as traders concentrate more and more on risk manage-
ment, options will very likely play an ever greater role. 

Portfolio Management Formulas discussed the relationship of op-
timal j and options.1 In this chapter we pick up on that discussion and 
Carry it further into an introduction of multiple simultaneous posi-
tions, especially with regard to options. 

This chapter gives us another method for finding the optimal f s 
for positions that are not entered and exited by using a mechanical 
system. The parametric techniques discussed thus far could be utilized 
by someone not trading by means of a mechanical system, but aside 
from the scenario planning approach, they still have some rough 
edges. For example, someone not using a mechanical system who was 
using the technique described in Chapter 4 would need an estimate of 
the kurtosis of his or her trades. This may not be too easy to come by 
(at least, an accurate estimate of this may not be readily available). 
Therefore, this chapter is for those who are using purely nonmechani-
cal means of entering and exiting their trades. Users of these tech-
niques will not need parameter estimates for the distribution of trades. 
However, they will need parameter estimates for both the volatility of 
the underlying instrument and the trader's forecast for the price of the 
underlying instrument. For a trader not utilizing a mechanical, objec-
tive system, these parameters are for easier to come by than parameter 
estimates for the distribution of trades that have not yet occurred. 

This discussion of optimal f and its by-products for those traders 
not utilizing a mechanical, objective system comes at a convenient 
stage in the book, as it is the perfect entree for multiple simultaneous 
positions. Does this mean that someone who is using a mechanical 
means to enter and exit trades cannot engage in multiple simultaneous 
positions? No. Chapter 6 will show us a method for finding optimal 
multiple simultaneous positions for traders whether they are using a 
mechanical system or not. This chapter introduces the concept of mul-
tiple simultaneous positions, but the standpoint is that of someone not 
using a mechanical system, and possibly using options as well as the 
underlying instruments. 

ESTIMATING VOLATILITY 
One important parameter a trader wishing to use the following con-

cepts must input is volatility. We discuss two ways to determine volatil-
ity. The first is to use the estimate that has been determined by the mar-
ketplace. This is called implied volatility. The option valuation models 
introduced in this chapter use volatility as one of their inputs to derive 
the fair theoretical price of an option. Implied volatility is determined by 
assuming that the market price of an option is equivalent to its fair theo-
retical price. Solving for the volatility value that yields a fair theoretical 
price equal to the market price determines the implied volatility. This 
value for volatility is arrived at by iteration. 

The second method of estimating volatility is to use what is known 
as historical volatility, which is determined by the actual price changes 
in the underlying instrument. Although volatility as input to the options 
                                                                 
1 There were some minor formulative problems with the options material in Port-
folio management Formulas, These have since been resolved, and the corrected 
formulations are presented here. My apologies for whatever confusion this may 
have caused. 

pricing models is an annualized figure, a much shorter period of time, 
usually 10 to 20 days, is used when determining historical volatility and 
the resulting answer is annualized. 

Here is how to calculate a 20-day annualized historical volatility. 
Step 1 Divide tonight's close by the previous market day's close. 
Step 2 Take the natural log of the quotient obtained in step 1. Thus, 

for the March 1991 Japanese yen on the night of 910225 (this is known 
as YYMMDD format for February 25, 1991), we take the close of 74.82 
and divide it by the 910222 close of 75.52: 
74.82/75.52 = .9907309322 

We then take the natural log of this answer. Since the natural log of 
.9907309322 is -.009312258, our answer to step 2 is -.009312258. 

Step 3 After 21 days of back data have elapsed, you will have 20 
values for step 2. Now you can start running a 20-day moving average 
to the answers from step 2. 

Step 4 You now want to run a 20-day sample variance for the data 
from step 2. For a 20-day variance you must first determine the moving 
average for the last 20 days. This was done in step 3. Then, for each day 
of the last 20 days, you take the difference between today's moving av-
erage, and that day's answer to step 2. In other words, for each of the last 
20 days you will subtract the moving average from that day's answer to 
step 2. Now, you square this difference (multiply it by itself). In so do-
ing, you convert all negative answers to positives so that all answers are 
now positive. Once that is done, you add up all of these positive differ-
ences for the last 20 days. Finally, you divide this sum by 19, and the 
result is your sample variance for the last 20 days. 

The following spreadsheet will show how to find the 20-day sample 
variance for the March 1991 Japanese yen for a single day, 901226 (De-
cember 26, 1990): 
A 
Date  

B 
Close 

C 
LN 
Change 

D 
20-Day 
Average 

E 
Col C-(-
.0029)  

F Col E 
Squared  

G 
Sum of 
Last20 
Values of Col 
F  

H Col G 
Divided 
by 19  

901127 77.96       
901128 76.91 -9.0136  -0.0107  0.000113    
901129 74.93 -0.0261  -0.0232  0.000537    
901130 75.37 0.0059   0.0088  0.000076    
901203 74.18 -0.0159  -0.0130  0.000169    
901204 74.72 0.0073   0.0102  0.000103    
901205 74.57 -0.0020  0.0009  0.000000    
901206 75.42 0.0113   0.0142  0.000202    
901207 76.44 0.0134   0.0163  0.000266    
901210 75.54 -0.0118  -0.0089  0.000079    
901211 75.37 -0.0023  0.0006  0.000000    
901212 75.9  0.0070   0.0099  0.000098    
901213 75.57 -0.0044  -0.0015  0.000002    
901214 75.08 -0.0065  -0.0036  0.000012    
901217 75.11 0.0004   0.0033  0.000010    
901218 74.99 -0.0016  0.0013  0.000001    
901219 74.52 -0.0063  -0.0034  0.000011    
901220 74.06 -0.0062  -0.0033  0.000010    
901221 73.91 -0.0020  0.0009  0.000000    
901224 73.49 -0.0057  -0.0028  0.000007    
901226 73.5  0.0001  -.0029  0.0030  0.000009  .001716  .000090  

As you can see, the 20-day sample variance for 901226 is .00009. 
You need to do this for every day so that you will have determined the 
20-day sample variance for every single day. 

Step 5 Once you have determined the 20-day sample variance for 
every single day, you must convert this into a 20-day sample standard 
deviation. This is easily accomplished by taking the square root of the 
variance for each day. Thus, for 901226, taking the square root of the 
variance (which was shown to be .00009) gives us a 20-day sample 
standard deviation of .009486832981. 

Step 6 Now we must "annualize" the data. Since we are using daily 
data, and we'll suppose that there are 252 trading days in the yen per 
year (approximately), we must multiply the answers from step 5 by the 
square root of 252, or 15.87450787. Thus, for 901226, the 20-day sam-
ple standard deviation is ,009486832981, and multiplying by 
15.87450787 gives us an answer of .1505988048. This answer is the 
historical volatility-in this case, 15.06%-and can be used as the volatility 
input to the Black-Scholes option pricing model. 
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The following spreadsheet shows how to go through the steps to get 
to this 20-day annualized historical volatility. You will notice that the 
interim steps in determining variance for a given day, which were de-
tailed on the previous spreadsheet, are not on this one. This was done in 
order for you to see the whole process. Therefore, bear in mind that the 
variance column in this following spreadsheet is determined for each 
row exactly as in the previous spreadsheet. 
A DATE B 

CLOSE  
C 
LN 
Change  

D 20-
Day 
Average 

E 20-Day 
Variance  

F 20-Day 
SD  

G Annual-
ized*15.8745
1  

901127  77.96       
901128  76.91  -0.0136      
901129  74.93  -0.0261      
901130  75.37  0.0059      
961203  74.18  -0.0159      
901204  74.72  0.0073      
901205  74.57  -0.0020      
901206  75.42  0.0113      
901207  76.44  0.0134      
901210  75.54  -0.0118      
901211  75.37  -0.0023      
961212  75.9  0.0070      
961213  75.57  -0.0044      
901214  75.08  -0.0065      
961217  75.11  0.0004      
901218  74.99  -0.0016      
901219  74.52  -0.0063      
901220  74.06  -0.0062      
901221  73.91  -0.0020      
901224  73.49  -0.0057      
901226  73.5  0.0001  -0.0029  0.0001  0.0095  0.1508  
901227  73.34  -0.0022  -0.0024  0.0001  0.0092  0.1460  
901 228  74.07  0.0099  -0.0006  0.0001  0.0077  0.1222  
901231  73.84  -0.0031  -0.0010  0.0001  0.0076  0.1206  

RUIN, RISK AND REALITY 
Recall the following axiom from the Introduction to this text: if you 

play a game with unlimited liability, you will go broke with a probabil-
ity that approaches certainty as the length of the game approaches 
infinity. What constitutes a game with unlimited liability? The answer is 
a distribution of outcomes where the left tail (the adverse outcomes) is 
unbounded and goes to minus infinity. Long option positions allow us to 
bound the adverse tail of the distribution of outcomes. 

You may take issue with this axiom. It seems irreconcilable that the 
risk of ruin be less than 1 (i.e., ruin is not certain), yet I contend that in 
trading an instrument with unlimited liability on any given trade, ruin is 
certain. In other words, my contention here is that if you trade anything 
other than options and you are looking at trading for an infinite length 
of time, your real risk of ruin is 1. Ruin is certain under such conditions. 
This can be reconciled with risk-of-ruin equations in that equations used 
for risk of ruin use empirical data as input. That is, the input to risk-of-
ruin equations comes from a finite sample of trades. My contention of 
certain ruin for playing an infinitely long game with unlimited liability 
on any given trade is derived from a parametric standpoint. The para-
metric standpoint encompasses the large losing trades, those trades way 
out on the left tail of the distribution, which have not yet occurred and 
are therefore not a part of the finite sample used as input into the risk-of-
rum equations. 

To picture this, assume for a moment a trading system being per-
formed under constant-contract trading. Each trade taken is taken with 
only 1 contract. To plot out where we would expect the equity to be X 
trades into the future, we simply multiply X by the average trade. Thus, 
if our system has an average trade of $250, and we want to know where 
we can expect our equity to be, say, 7 trades into the future, we can 
determine this as $250*7 = $1,750. Notice that this line of arithmetic 
mathematical expectation is a straight-line function. 

Now, on any given trade, a certain amount can be lost, thus drop-
ping us down (temporarily) from this expected line. In this hypothetical 
situation we have a limit to what we can lose on any given trade. Since 
our line is always higher than the most we can lose on a given trade, we 
cannot be ruined on one trade. However, a prolonged losing streak could 
drop us far enough down from this line that we could not continue to 
trade, hence we would be "ruined." The probability of this diminishes as 
more trades elapse, as the line of expectation gets higher and higher. A 

risk-of-ruin equation can tell us what the probability of ruin is before we 
start out trading this system. 

If we were trading this system on a fixed fractional basis, the line 
would curve upward, getting steeper and steeper with each elapsed 
trade. However, the amount we could drop off of this line is always 
commensurate with how high we are on the line. That is, the probability 
of ruin does not diminish as more and more trades elapse. In theory, 
though, the risk of ruin in fixed fractional trading is zero, because we 
can trade in infinitely divisible units. In real life this is not necessarily 
so. In real life, the risk of ruin in fixed fractional trading is always a 
little higher than in the same system under constant-contract trading. 

In reality, there is no limit on how much you can lose on any given 
trade. 

In reality, the equity expectation lines we are talking about can be 
retraced completely in one trade, regardless of how high they are. Thus, 
the risk of ruin, if we are to trade for an infinitely long period of time in 
an instrument with unlimited liability, regardless of whether we are 
trading on a constant-contract or a fixed fractional basis, is 1. Ruin is 
certain. The only way to defuse this is to be able to put a cap on the 
maximum loss. This can be accomplished by trading options where the 
position is initiated at a debit.2 

OPTION PRICING MODELS 
Imagine an underlying instrument (it can be a stock, bond, foreign 

currency, commodity, or anything else) that can trade up or down by 1 
tick on the next trade. If, say, we measure where this stock will be 100 
ticks down the road, and if we do this over and over, we will find that 
the distribution of outcomes is Normal. This, per Galton's board, is as 
we would expect it to be. 

If we then figured the price of the option based on this principle 
such that you could not make a profit by buying these options, or by 
selling them short, we would have arrived at the Binomial Option Pric-
ing Model (Binomial Model or Binomial). This is sometimes also called 
the Cox-Ross-Rubenstein model after those who devised it. Such an 
option price is based on its expected value (its arithmetic mathematical 
expectation), since you cannot make a profit by either buying these op-
tions repeatedly and holding them to expiration or selling them repeat-
edly and holding the position till expiration, losing on some and winning 
on others but netting out a profit in the end. Thus, the option is said to 
be fairly priced. 

We will not cover the specific mathematics of the Binomial Model. 
Rather, we till cover the mathematics of the Black-Scholes Stock Option 
Model and the Black Futures Option Model. You should be aware that, 
inside from these three models, there are other valid options pricing 
models which will not be covered here either, although the concepts 
discussed in this chapter apply to all options pricing models. Finally, the 
best reference I know of regarding the mathematics of options pricing 
models is Option Volatility and Pricing Strategies by Sheldon Naten-
berg. Natenberg's book covers the mathematics for many of the options 
pricing models (including the Binomial Model) in great detail. The math 
for the Black-Scholes Stock Option Model and the Black Futures Option 
Model, which we are about to discuss, comes from Natenberg. These 
topics take an entire text to discuss, more space than we have here. 
Those readers who want to pursue the concepts of optimal f and options 
are referred to Natenberg for foundational material regarding options. 

We must cover pricing models on a level sufficient to work the op-
timal f techniques about to be discussed on option prices. Therefore, we 
will now discuss the Black-Scholes Stock Option Pricing Model (hereaf-
ter, Black-Scholes). This model is named after those who devised it, 
Fischer Black at the University of Chicago and Myron Scholes at 
M.I.T., and appeared in the May-June 1973 Journal of Political Econ-
omy. Black-Scholes is considered the limiting form of the Binomial 
Model (hereafter, Binomial). In other words, with the Binomial, you 
must determine how many up or down ticks you are going to use before 

                                                                 
2 We will see later in this chapter that underlying instruments are identical to call 
options with infinite time till expiration. Therefore, if we are long the underlying 
installment we can assume that our worst-case loss is the full value of the instru-
ment. In many cases, this can be regarded in a loss of such magnitude as to be 
synonymous with a cataclysmic loss. However, being short the underlying in-
strument is analogous to being short a call option with infinite time remaining of 
expiration, and liability is truly unlimited in such a situation. 
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you record where the price might end up. The following little diagram 
shows the idea. 

Initial Price

 
Here, you start out at an initial price, where price can branch off in 2 

directions for the next period. The period after that, there are 4 direc-
tions that the price might end up. Ultimately, with the Binomial you 
must determine in advance how many periods in total you are going to 
use to figure the fair price of the option on. 

Black-Scholes is considered the limiting form of the Binomial be-
cause it assumes an infinite number of periods (in theory). That is, 
Black-Scholes assumes that this little diagram will keep on branching 
out and to the right infinitely. If you determine an option's fair price via 
Black-Scholes, then you will tend toward the same answer with the 
Binomial as the number of periods used in the Binomial tends toward 
infinity. (The fact that Black-Scholes is the limiting form of the Bino-
mial would imply that the Binomial Model appeared first. Oddly 
enough, the Black-Scholes model appeared first.) 

The mathematics of Black-Scholes are quite straightforward. The 
fair value of a call on a stock option is given as: 
(5.01) C = U*EXP(-R*T)*N(H)-E*EXP(-R*T)*N(H-V*T^(1/2)) 

and for a put: 
(5.02) P = -U*EXP(-R*T)*N(-H)+E*EXP(-R*T)*N(V*T^(l/2)-H) 

where 
C = The fair value of a call option. 
P = The fair value of a put option. 
U = The price of the underlying instrument. 
E = The exercise price of the option. 
T = Decimal fraction of the year left to expiration.3 
V = The annual volatility in percent. 
R = The risk-free rate. 
ln() = The natural logarithm function. 
N() = The cumulative Normal density function, as given in Equation 

(3.21). 
(5.03) H = ln(U/(E*EXP(-R*T)))/(V*T^(l/2))+(V*T^(l/2))/2 

For stocks that pay dividends, you must adjust the variable U to re-
flect the current price of the underlying minus the present value of the 
expected dividends: 
(5.04) U = U-∑[i = 1,N] Di*EXP(-R*Wi) 

where 
Di = The ith expected dividend payout. 
Wi = The time (decimal fraction of a year) to the ith payout. 
One of the very nice things about the Black-Scholes Model is the 

exact calculation of the delta, the first derivative of the price of the op-
tion. This is the option's instantaneous rate of change with respect to a 
change in U, the price of the underlying: 

                                                                 
3 Most often, only market days are used in calculating the fraction of a year in 
options. The number of weekdays in a year (Gregorian) can be determined as 
365.2425/7*5 = 260.8875 weekdays on average per year. Due to holidays, the 
actual number of trading days in a year is usually somewhere between 250 and 
252. Therefore, if we are using a 252-trading-day year, and there are 50 trading 
days left to expiration, the decimal fraction of the year left to expiration, T, 
would be 50/252 = .1984126984. 

(5.05) Call Delta = N(H) 
(5.06) Put Delta = -N(-H) 

These deltas become quite important in Chapter 7, when we discuss 
portfolio insurance. 

Black went on to make the model applicable to futures options, 
which have a stock-type settlement.4 The Black futures option pricing 
model is the same as the Black-Scholes stock option pricing model ex-
cept for the variable H: 
(5.07) H = ln(U/E)/(V*T^(1/2))+(V*T^(l/2))/2 

The only other difference in the futures model is the deltas, which 
are: 
(5.08) Call Delta = EXP(-R*T)*N(H) 
(5.09) Put Delta = -EXP(-R*T)*N(-H) 

For example, suppose we are looking at a futures option that has a 
strike price of 600, a current market price of 575 on the underlying, and 
an annual volatility of 25%. We will use the commodity options model, 
a 252-day year, and a risk-free rate of 0 for simplicity. Further, we will 
assume that the expiration day of the options is September 15, 1991 
(910915), and that the day on which we are observing these options is 
August 1, 1991 (910801). 

To begin with, we will calculate the variable T, the decimal fraction 
of the year left to expiration. First, we must convert both 910801 and 
910915 to their Julian day equivalents. To do this, we must use the fol-
lowing algorithm. 
1. Set variable 1 equal to the year (1991), variable 2 equal to the 
month (8) and variable 3 equal to the day (1). 
2. If variable 2 is less than 3 (i.e., the month is January or February) 
then set variable 1 equal to the year minus 1 and set variable 2 equal to 
the month plus 13. 
3. If variable 2 is greater than 2 (i.e., the month is March or after) then 
set variable 2 equal to the month plus 1. 
4. Set variable 4 equal to variable 3 plus 1720995 plus the integer of 
the quantity 365.25 times variable 1 plus the integer of the quantity 
30.6001 times variable 2. Mathematically: 
V4 = V3+1720995+INT(365.25*V1)+INT(30.6001*V2) 
5. Set variable 5 equal to the integer of the quantity .01 times variable 
1: Mathematically: 
V5 = INT(.01*V1) 

Now to obtain the Julian date as variable 4 plus 2 minus variable 5 
plus the integer of the quantity .25 times variable 5. Mathematically: 
JULIAN DATE = V4+2-V5+INT(.25*V5) 

So to convert our date of 910801 to Julian: 
Step 1 V1 = 1991, V2 = 8, V3 = 1 
Step 2 Since it is later in the year than January or February, this step 

does not apply. 
Step 3 Since it is later in the year than January or February, this step 

does apply. Therefore V2 = 8+1 = 9. 
Step 4 Now we set V4 as: 

V4 = V3+1720995+INT(365.25*V1)+INT(30.6001*V2)  
= 1+1720995+INT(365.25*1991)+INT(30.6001*9)  
= 1+1720995+INT(727212.75)+INT(275.4009)  
= 1+1720995+727212+275  
= 2448483 

Step 5 Now we set V5 as:  
V5 = INT(.01*V1)  
= INT(.01*1991)  
= INT( 19.91)  
= 19 

Step 6 Now we obtain the Julian date as: 
JULIAN DATE = V4+2-V5+INT(.25*V5)  
                                                                 
4 Futures-type settlement requires no initial cash payment, although the required 
margin must be posted. Additionally, all profits and losses are realized immedi-
ately, even if the position is not liquidated. These points are in direct contrast to 
stock-type settlement. In stock-type settlement, purchase requires full and imme-
diate payment, and profits (or losses) are not realized until the position is liqui-
dated. 
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= 2448483+2-19+INT(.25*19)  
= 2448483+2-19+INT(4.75)  
= 2448483+2-19+4  
= 2448470 

Thus, we can state that the Julian date for August 1, 1991, is 
2448470. Now if we convert the expiration date of September 15, 1991 
to Julian, we would obtain a Julian date of 2448515. 

If we were using a 365 day year (or 365.2425, the Gregorian Calen-
dar length), we could find the time left until expiration by simply taking 
the difference between these two Julian dates, subtracting 1 and dividing 
the sum by 365 (or 365.2425). 

However, we are not using a 365 day year; rather we are using a 
252-day year, as we are only counting days when the exchange is open 
(weekdays less holidays). Here is how we account for this. We must 
examine each day between the two Julian dates to see if it is a weekend. 
We can determine what day of the week a given Julian date is by adding 
1 to the Julian date, dividing by 7, and taking the remainder (the 
modulus operation). The remainder will be a value of 0 through 6, cor-
responding to Sunday through Saturday. Thus, for August 1, 1991, 
where the Julian date is 2448470: 
Day of week = ((2448470+l)/7) % 7  
= 2448471/ % 7  
= ((2448471/7)-INT(2448471/7))*7  
= (349781.5714-349781)*7  
= .5714*7  
= 4 

Since 4 corresponds to Thursday, we can state that August 1, 1991 
is a Thursday. 

We now proceed through each Julian date up to and including the 
expiration date. We count up all of the weekdays in between those two 
dates and find that there are 32 weekdays in between (and including) 
August 1, 1991 and September 15, 1991. From our final answer we must 
subtract 1, as we count day one when August 2, 1991 arrives. Therefore, 
we have 31 weekdays between 910801 and 910915. 

Now we must subtract holidays, when the exchange is closed. Mon-
day September 2, 1991, is Labor Day in the United States. Even though 
we may not live in the United States, the exchange where this particular 
option is traded on, being in the United States, will be closed on Sep-
tember 2, and therefore we must subtract 1 from our count of days. 
Therefore, we determine that we have 30 "tradeable" days before expira-
tion. 

Now we divide the number of tradeable days before expiration by 
the length of what we have determined the year to be. Since we are us-
ing a 252 day year, we divide 30 by 252 to obtain .119047619. This is 
the decimal fraction of the year left to expiration, the variable T. 

Next, we must determine the variable H for the pricing model. Since 
we are using the futures model, we must calculate H as in Equation 
(5.07): 
(5.07) H = ln(U/E)/(V*T^(1/2))+(V*T^(l/2))/2  
= ln(575/600)/(.25*.119047619^(1/2))+(.25*.119047619 ^ (l/2))/2  
= ln(575/600)/(.25*.119047619^.5)+(.25*.119047619^.5)/2  
= ln(575/600)/(.25*.3450327796)+(.25*.3450327796)/2  
= ln(575/600)/.0862581949+.0862581949/2  
= ln(.9583333)/.0862581949+.0862581949/2  
= .04255961442/.0862581949+.0862581949/2  
= -.4933979255+.0862581949/2  
= -.4933979255+.04312909745  
= -.4502688281 

In Equation (5.01) you will notice that we need to use Equation 
(3.21) on two occasions. The first is where we set the variable Z in 
Equation (3.01) to the variable H as we have just calculated it; the sec-
ond is where we set it to the expression H-V*T^(1/2). We know that 
V*T^(1/2) is equal to .0862581949 from the last expression, so H-
V*T^(1/2) equals -.4502688281-.0862581949 = -.536527023. We there-
fore must use Equation (3.21) with the input variable Z as -.4502688281 
and -.536527023. Prom Equation (3.21), this yields .3262583 and 
.2957971 respectively (Equation (3.21) has been demonstrated in Chap-
ter 3, so we need not repeat it here). Notice, however, that we have now 

obtained the delta, the instantaneous rate of change of the price of the 
option with respect to the price of the underlying. The delta is N(H), or 
the variable H pumped through as Z in Equation (3.21). Our delta for 
this option is there-fore .3262583. 

We now have all of the inputs required to determine the theoretical 
option price. Plugging our values into Equation (5.01): 
(5.01) C = U*EXP(-R*T)*N(H)-E*EXP(-R*T)*N(H-V *T^(1/2))  
= 575*EXP(-0*.119047619)*N(-.4502688281)-600*EXP(-
0*.119047619)*N(-.4502688281-.25*.119047619^(1/2))  
= 575*EXP(-0*.119047619)*.3262583-600*EXP(-
0*.119047619)*.2957971  
= 575*EXP(0)*.3262583-600*EXP(0)*.2957971  
= 575*1*.3262583-600*1*.2957971  
= 575*.3262583-600*.2957971  
= 187.5985225-177.47826  
= 10.1202625 

Thus, the fair price of the 600 call option that expires September 15, 
1991, with the underlying at 575 on August 1, 1991, with volatility at 
25%, and using a 252-day year and the Black futures model with R = 0, 
is 10.1202625. 

It is interesting to note the relationship between options and their 
underlying instruments by using these pricing models. We know that 0 
is the limiting downside price of an option, but on the upside the limit-
ing price is the price of the underlying instrument itself. The models 
demonstrate this in that the theoretical fair price of an option approaches 
its upside limiting value of the value of the underlying, U, if any or all 
three of the variables T, R, or V are increased. This would mean, for 
instance, that if we increased T, the time till expiration of the option, to 
an infinitely high amount, then the price of the option would equal that 
of the underlying instrument. In this regard, we can state that all under-
lying instruments are really the same as options, only with infinite T. 
Thus, what follows in this discussion is not only true of options, it can 
likewise be said to be true of the underlying as though it were an option 
with infinite T. 

Both the Black-Scholes stock option model and the Black futures 
model are based on certain assumptions. The developers of these models 
were aware of these assumptions and so should you be. Nonetheless, 
despite whatever shortcomings are involved in the assumptions, these 
models are still very accurate, and option prices will tend to these mod-
els' values. 

The first of these assumptions is that the option cannot be exercised 
until the exercise date. This European style options settlement tends to 
underprice certain options as compared to the American style, where the 
options can be exercised at any time. Some of the other assumptions in 
this model are that we actually know the future volatility of the underly-
ing instrument and that it will remain constant throughout the life of the 
option. Not only will this not happen (i.e., the volatility will change), but 
the distribution of volatility changes is lognormal, an issue that the 
models do not address.5 Another issue that the models assume is that the 
risk-free interest rate will remain constant throughout the life of an op-
tion. This also Is unlikely. Furthermore, short-term rates appear to be 
lognormally distributed. Since the higher the short-term rates are the 
higher the resultant option prices will be, this assumption regarding 
short-term rates being constant may further undervalue the fair price of 
the option (the price returned by the models) relative to the expected 
value (its true arithmetic mathematical expectation). 

Finally, another point (perhaps the most important point) that might 
undervalue the model-generated fair value of the option relative to the 
true expected value regards the assumption that the logs of price 
changes are normally distributed. If rather than having a time frame in 
which they expired, options had a given number of up and down ticks 
before they expired, and could only change by 1 tick at a time, and if 
each tick was statistically independent of the last tick, we could rightly 
make this assumption of Normality. The logs of price changes, however, 
do not have these clean characteristics. 

                                                                 
5 The fact that the distribution of volatility changes is lognormal is not a very 
widely considered fact. In light of how extremely sensitive option prices are to 
the volatility of the underlying instrument, this certainly makes the prospect of 
buying a long Option (put Or call) more appealing in terms of mathematical 
expectation. 
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All of these assumptions made by the pricing models aside, the 
theoretical fair prices returned by the models are monitored by profes-
sionals in the marketplace. Even though many are using models that 
differ from these detailed here, most models return similar theoretical 
fair prices. When actual prices diverge from the models to the extent 
that an arbitrageur has a profit opportunity, they will begin to again 
converge to what the models claim is the theoretical fair price. This fact, 
that we can predict with a fair degree of accuracy what the price of an 
option will be given the various inputs (time to expiration, price of the 
underlying instrument, etc.) allows us to perform the exercises regarding 
optimal f and its by-products on options and mixed positions. The reader 
should bear in mind that all of these techniques are based on the as-
sumptions just noted about the options pricing models themselves. 

A EUROPEAN OPTIONS PRICING MODEL FOR ALL DIS-
TRIBUTIONS 

We can create our own pricing model devoid of any assumptions 
regarding the distribution of price changes. 

First, the term "theoretically fair" needs to be defined when refer-
ring to an options price. This definition is given as the arithmetic 
mathematical expectation of the option at expiration, expressed in 
terms of-its present worth, assuming no directional bias in the underly-
ing. This is our options pricing model in literal terms. The frame of ref-
erence employed here is 'What is this option worth to me today as an 
options buyer?" 

In mathematical terms, recall that the mathematical expectation 
(arithmetic) is defined as Equation (1.03): 
(1.03) Mathematical expectation = ∑[i = 1,N] (pi*ai) 

where 
p = Probability of winning or losing the ith trial. 
a = Amount won or lost on the ith trial. 
N = Number of possible outcomes (trials). 
The mathematical expectation is computed by multiplying each pos-

sible gain or loss by the probability of that gain or loss and then sum-
ming these products. When the sum of the probabilities, the pi terms, is 
greater than 1, Equation 1,03 must then be divided by the sum of the 
probabilities, the pi terms. 

In a nutshell, our options pricing model will take all those discrete 
price increments that have a probability greater than or equal to .001 of 
occurring at expiration and determine an arithmetic mathematical expec-
tation on them. 
(5.10) C = ∑(pi*ai)/∑pi 

where 
C = The theoretically fair value of an option, or an arithmetic 

mathematical expectation. 
pi = The probability of being at price i on expiration. 
ai = The intrinsic value associated with the underlying instrument 

being at price i. 
In using this model, we first begin at the current price and work up I 

tick at a time, summing the values in both the numerator and denomina-
tor until the price, i, has a probability, pi, less than .001 (you can use a 
value less than this, but I find .001 to be a good value to use; it implies 
finding a fair value assuming you are going to have 1,000 option trades 
in your lifetime). Then, starting at that value which is 1 tick below the 
current price, we work down 1 tick at a time, summing values for both 
the numerator and denominator until the price, i, results in a probability, 
pi, less than .001. Note that the probabilities we are using are 1-tailed 
probabilities, where if a probability is greater than .5, we are subtracting 
the probability from 1. 

Of interest to note is that the pi terms, the probabilities, can be dis-
cerned by whatever distribution the user feels is applicable, not just the 
Normal. That is, the user can derive a theoretically fair value of an op-
tion for any distributional form! Thus, this model frees us to use the 
stable Paretian, Student's t, Poisson, our own adjustable distribution, or 
any other distribution we feel price conforms to in determining fair op-
tions values. 

We still need to amend the model to express the arithmetic mathe-
matical expectation at expiration as a present value: 
(5.11) C = (∑ (pi*ai)*EXP(-R*T))/ ∑ pi 

where 
C = The theoretically fair value of an option, or the present value of 

the arithmetic mathematical expectation at time T. 
pi = The probability of being at price i on expiration. 
ai = The intrinsic value associated with the underlying instrument 

being at price i. 
R = The current risk-free rate. 
T = Decimal fraction of a year remaining till expiration. 
Equation (5.11) is the options pricing model for all distributions, re-

turning the present worth of the arithmetic mathematical expectation of 
the option at expiration.6 Note that the model can be used for put values 
as well, the only difference being in discerning the intrinsic values, the 
ai terms, at each price increment, i. 

When dividends are involved, Equation (5.04) should be employed 
to adjust the current price of the underlying by. Then this adjusted cur-
rent price is used in determining the probabilities associated with being 
at a given price, i, at expiration. 

An example of using Equation (5.11) is as follows. Suppose we de-
termine that the Student's t distribution is a good model of the distribu-
tion of the log of price changes7 for a hypothetical commodity that we 
are considering buying options on. Now we use the K-S test to deter-
mine the best-fitting parameter value for the degrees of freedom pa-
rameter of the Student's t distribution. We will assume that 5 degrees of 
freedom provides for the best fit to the actual data per the K-S test. 

We will assume that we are discerning the fair price for a call option 
on 911104 that expires 911220, where the price of the underlying is 100 
and the strike price is 100. We will assume an annualized volatility of 
20%, a risk-free rate of 5%, and a 260.8875-day year (the average num-
ber of weekdays in a year; we therefore ignore holidays that fall on a 
weekday, for example, Thanksgiving in the United States). Further, we 
will assume that the minimum tick that this hypothetical commodity can 
trade in is .10. 

If we perform Equations (5.01) and (5.02) using (5.07) for the vari-
able II, we obtain fair values of 2.861 for both the 100 call and 100 put. 
These options prices are thus the fair values according to the Black 
commodity options model, which assumes a lognormal distribution of 
prices. If, however, we use Equation (5.11), we must figure the pi terms. 
These we obtain from the snippet of BASIC code in Appendix B. Note 
that the snippet of code requires a standard value, given the variable 
name Z, and the degrees of freedom, given the variable name 
DEGFDM. Before we call this snippet of code we can convert the price, 
i, to a standard value by the following formula: 
(5.12) Z = ln(i/current underlying price)/(V*T^.5) 

where 
i = The price associated with the current status of the summation 

process. 
V = The annualized volatility as a standard deviation. 
T = Decimal fraction of a year remaining till expiration. 
ln() = The natural logarithm function. 
Equation (5.12) can be expressed in BASIC as: 

Z = LOG(I/U)/(V*T^.5) 

                                                                 
6 Notice that Equation (5.11) does not differentiate stock from commodity op-
tions. Conventional thinking has it that, embedded in the price of a stock option, 
is the interest on a pure discount bond that matures at expiration with a face value 
equal to the strike price. Commodity options, it is believed, see an interest rate of 
0 on this, so it is as if they do not have it. From our frame of reference-that is, 
"What is this option worth to me today as an options buyer?"-we disregard this. If 
both a stock and a commodity have exactly the same expected distribution of 
outcomes, their arithmetic mathematical expectations are the same, and the ra-
tional investor would opt for buying the less expensive. This situation is analo-
gous to someone considering buying One of two identical houses where one is 
priced higher because the seller has paid a higher interest rate on the mortgage. 
7 The Student's t distribution is generally a poor model of the distribution of price 
changes. However, since the only other parameter, aside from volatility as an 
annualized standard deviation, which needs to be considered in using the Stu-
dent's t distribution, is the degrees of freedom, and since the probabilities associ-
ated with the Student's t distribution are easily ascertained by the snippet of Basic 
code in Appendix B, we will use the Student's t distribution here for the sake of 
simplicity and demonstration. 
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The variable U represents the current underlying price (adjusted for 
dividends, if necessary). 

Lastly, once we have obtained a probability from the Student's t dis-
tribution BASIC code snippet in Appendix B, the probability returned is 
a 2-tailed one. We need to make it a 1-tailed probability and express it 
as a probability of deviating from the current price (i.e., bound it be-
tween 0 and .5). These two procedures are performed by the following 
two lines of BASIC: 
CF = 1-((1- CF)/2) IF CF >.5 then CF = 1-CF 

Doing this with the option parameters we have specified, and 5 de-
grees of freedom, yields a fair call option value of 3.842 and a fair put 
value of 2.562. These values differ considerably from the more conven-
tional models for a number of reasons. 

First, the fatter tails of the Student's t distribution with 5 degrees of 
freedom will make for a higher fair call value. Generally, the thicker the 
tails of the distribution used, the greater the call value returned. Had we 
used 4 degrees of freedom, we would have obtained an even greater fair 
call value. 

Second, the put value and the call value differ substantially, whereas 
with the more conventional model the put and call value were equiva-
lent. This difference requires some discussion. 

The fair value of a put can be determined from a call option with the 
same strike and expiration (or vice versa) by the put-call parity formula: 
(5.13) P = C+(E-U)*EXP(-R*T) 

where 
P = The fair put value. 
C = The fair call value. 
E = The strike price. 
U = The current price of the underlying instrument. 
R = The risk-free rate. 
T = Decimal fraction of a year remaining till expiration. 
When Equation (5.13) is not true, an arbitrage opportunity exists. 

From (5.13) we can see that the conventional model's prices, being 
equivalent, would appear to be correct since the expression E-U is 0, 
and therefore P = c. 

However, let's consider the variable U in Equation (5.13) as the ex-
pected price of the current underlying instrument at expiration. The 
expected value of the underlying can be discerned by (5.10) except the 
ai term simply equals i. For our example with DEGFDM = 5, the ex-
pected value for the underlying instrument = 101.288467. This happens 
as a result of the fact that the least a commodity can trade for in this 
model is 0, whereas there is no upside limit. A move from a price of 100 
to a price of 50 is as likely as a move from a price of 100 to 200. Hence, 
call values will be priced greater than put values. It comes as no surprise 
then that the expected value of the underlying instrument at expiration 
should be greater than its current value. This seems to be consistent with 
our experience with inflation. When we replace the U in Equation 
(5.13), the current price of the underlying instrument, with its expected 
value at expiration, we can derive our fair put value from (5.13) as: 
P = 3.842+(100-101.288467)*EXP(-.05*33/260.8875) = 3.842+-
1.288467*EXP(-.006324565186) = 3.842+-1.288467*.9936954 = 
3.842+-1.280343731 = 2.561656269 

This value is consistent with the put value discerned by using Equa-
tion (5.11) for the current value of the arithmetic mathematical expecta-
tion of the put at expiration. 

There's only one problem. If both the put and call options for the 
same strike and expiration are fairly priced per (5.11), then an arbitrage 
opportunity exists. In the real world the U in (5.13) is the current price 
of the underlying, not the expected value of the underlying, at expira-
tion. In other words, if the current price is 100 and the December 100 
call is 3.842 and the 100 put is 2.561656269, then an arbitrage opportu-
nity exists per (5.13). 

The absence of put-call parity would suggest, given our newly de-
rived options prices, that rather than buy the call for 3.842 we instead 
obtain a* equivalent position by buying the put for 2.562 and buy the 
underlying. 

The problem is resolved if we first calculate the expected value on 
the underlying, discerned by Equation (5.10) except the ai term simply 
equals i (for our example with DEGFDM = 5, the expected value for the 

underlying instrument equals 101.288467) and subtract the current price 
of the underlying from this value. This gives us 101.288467-100 = 
1.288467. Now if we subtract this value from each ai term, each intrin-
sic value in (5.11) (and setting any resultant values less than 0 to 0), 
then Equation (5.11) will yield theoretical values that are consistent with 
(5.13). This procedure has the effect of forcing the arithmetic mathe-
matical expectation on the underlying to equal the current price of the 
underlying. In the case of our example using the Student's t distribution 
with 5 degrees of freedom, we obtain a value for both the 100 put and 
call of 3.218. Thus our answer is consistent with Equation (5.13), and an 
arbitrage opportunity no longer exists between these two options and 
their underlying instrument. 

Whenever we are using a distribution that results in an arithmetic 
mathematical expectation at expiration on the underlying which differs 
from the current value of the underlying, we must subtract the difference 
(expectation-current value) from the intrinsic value at expiration of the 
options and floor those resultant intrinsic values less than 0 to 0. In so 
doing, Equation (5.11) will give us, for any distributional form we care 
to use, the present worth of the arithmetic mathematical expectation of 
the option at expiration, given an arithmetic mathematical expectation 
on the underlying instrument equivalent to its current price (i.e., as-
suming no directional bias in the underlying instrument). 

THE SINGLE LONG OPTION AND OPTIMAL F 
Let us assume here that we are speaking about the simple outright 

purchase of a call option. Rather than taking a full history of option 
trades that a given market system produced and deriving our optimal f 
therefrom, we are going to take a look at all the possible outcomes of 
what this particular option might do throughout the term that we hold it. 
We are going to weight each outcome by the probability of its occur-
rence. This probability-weighted outcome will be derived as an HPR 
relative to the purchase price of the option. Finally, we will look at the 
full spectrum of outcomes (i.e., the geometric mean) for each value for f 
until we obtain the optimal value. 

In almost all of the good options pricing models the input variables 
that have the most effect on the theoretical options price are (a) the time 
remaining till expiration, (b) the strike price, (c) the underlying price, 
and (d) the volatility. Different models have different input, but basi-
cally these four have the greatest bearing on the theoretical value re-
turned. 

Of the four basic inputs, two-the time remaining till expiration and 
the underlying price-are certain to change. One, volatility, may change, 
yet rarely to the extent of the underlying price or the time till expiration, 
and certainly not as definitely as these two. One, the strike price, is cer-
tain not to change. 

Therefore, we must look at the theoretical price returned by our 
model for all of these different values of different underlying prices and 
different for all of these different values of different underlying prices 
and different times left till expiration. The HPR for an option is thus a 
function not only of the price of the underlying, but also of how much 
time is left on the option: 
(5.14) HPR(T,U) = (1+f*(Z(T,U-Y)/S-1))^P(T,U) 

where 
HPR(T,U) = The HPR for a given test value for T and U. 
f = The tested value for f. 
S = The current price of the option. 
Z(T,U-Y) = The theoretical option price if the underlying were at 

price U-Y with time T remaining till expiration. This can be discerned 
by whatever pricing model the user deems appropriate. 

P(T,U) = The I-tailed probability of the underlying being at price U 
by time T remaining till expiration. This can discerned by whatever 
distributional form the user deems appropriate. 

Y = The difference between the arithmetic mathematical expecta-
tion of the underlying at time T, given by Equation (5.10), and the cur-
rent price. 

This formula will give us the HPR (which is probability-weighted to 
the probability of the outcome) of one possible outcome for this option: 
that the underlying instrument will be at price U by time T. 

In the preceding equation the variable T represents the decimal part 
of the year remaining until option expiration. Therefore, at expiration T 
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= 0. If 1 year is left to expiration, T = 1. The variable Z(T, U-Y) is 
found via whatever option model you are using. The only other variable 
you need to calculate is the variable P(T, U), the probability of the un-
derlying being at price U with time T left in the life of the option. 

If we are using the Black-Scholes model or the Black commodity 
model, we can calculate P(T, U) as: 
if U < or = to Q: 
(5.15a) P(T,U) = N((ln(U/Q))/(V*(L^(1/2)))) 
if U > Q: 
(5.15b) P(T,U) = 1-N((ln(U/Q))/(V*(L^(1/2)))) 

where 
U = The price in question. 
Q = Current price of the underlying instrument. 
V = The annual volatility of the underlying instrument. 
L = Decimal fraction of the year elapsed since the option was put 

on. 
N() = The Cumulative Normal Distribution Function. This is given 

as Equation (3.21). 
ln() = The natural logarithm function. 
Having performed these equations, we can derive a probability-

weighted HPR for a particular outcome in the option. A broad range of 
outcomes are possible, but fortunately, these outcomes are not continu-
ous. Take the time remaining till expiration. This is not a continuous 
function. Rather, a discrete number of days are left till expiration. The 
same is true for the price of the underlying. If a stock is at a price of, 
say, 35 and we want to know how many possible price outcomes there 
are between the possible prices of 30 and 40, and if the stock is traded in 
eighths, then we know that there are 81 possible price outcomes be-
tween 30 and 40 inclusive. 

What we must now do is calculate all of the probability- weighted 
HPRs on the option for the expiration date or for some other mandated 
exit date prior to the expiration date. Say we know we will be out of the 
option no later than a week from today. In such a case we do not need to 
calculate HPRs for the expiration day, since that is immaterial to the 
question of how many of these options to buy, given all of the available 
information (time to expiration, time we expect to remain in the trade, 
price of the underlying instrument, price of the option, and volatility). If 
we do not have a set time when we will be out of the trade, then we 
must use the expiration day as the date on which to calculate probabil-
ity-weighted HPRs. 

Once we know how many days to calculate for (and we will assume 
here that we will calculate up to the expiration day), we must calculate 
the probability-weighted HPRs for all possible prices for that market 
day. Again, this is not as overwhelming as you might think. In the Nor-
mal Probability Distribution, 99.73% of all outcomes will fall within 
three standard deviations of the mean. The mean here is the current price 
of the underlying instrument. Therefore, we really only need to calculate 
the probability-weighted HPRs for a particular market day, for each 
discrete price between -3 and +3 standard deviations. This should get us 
quite accurately close to the correct answer. Of course if we wanted to 
we could go out to 4, 5, 6 or more standard deviations, but that would 
not be much more accurate. Likewise, if we wanted to, we could con-
tract the price window in by only looking at 2 or 1 standard deviations. 
There is no gain in accuracy by doing this though. The point is that 3 
standard deviations is not set in stone, but should provide for sufficient 
accuracy. 

If we are using the Black-Scholes model or the Black futures option 
model, we can determine how much 1 standard deviation is above a 
given underlying price, U: 
(5.16) Std. Dev. = U*EXP(V*(T^(1/2))) 

where 
U = Current price of the underlying instrument. 
V = The annual volatility of the underlying instrument. 
T = Decimal fraction of the year elapsed since the option was put 

on. 
EXP() = The exponential function. 
Notice that the standard deviation is a function of the time elapsed 

in the trade (i.e., you must know how much time has elapsed in order to 
know where the three standard deviation points are). 

Building upon this equation, to determine that point that is X stan-
dard deviations above the current underlying price: 
(5.17a) +X Std. Dev. = U*EXP(X*(V*T^(1/2))) 

Likewise, X standard deviations below the current underlying price 
is found by: 
(5.17b) -X Std. Dev. = U*EXP(-X*(V*T ^ (1/2))) where U = Current 
price of the underlying instrument. 

V = The annual volatility of the underlying instrument. 
T = Decimal fraction of the year elapsed since the option was put 

on. 
EXP() = The exponential function. 
X = The number of standard deviations away from the mean you are 

trying to discern probabilities on. 
Remember, you must first determine how old the trade is, as a frac-

tion of a year, before you can determine what price constitutes X stan-
dard deviations above or below a given price U. 

Here, then, is a summary of the procedure for finding the optimal f 
for a given option. 

Step 1 Determine if you will be out of the option by a definite date. 
If not, then use the expiration date. 

Step 2 Counting the first day as day 1, determine how many days 
you will have been in the trade by the date in number 1. Now convert 
this number of days into a decimal fraction of a year. 

Step 3 For the day in number 1, calculate those points that are 
within +3 and -3 standard deviations of the current underlying price. 

Step 4 Convert these ranges of values of prices in step 3 to discrete 
values. In other words, using increments of 1 tick, determine all of the 
possible prices between and including those values in step 3 that bound 
the range. 

Step 5 For each of these outcomes now calculate the Z(T, U-Y)'s 
and P(T, U)'s for the probability-weighted HPR equation. In other 
words, for each of these outcomes now calculate the resultant theoretical 
option price as well as the probability of the underlying instrument be-
ing at that price by the dates in question. 

Step 6 After you have completed step 5, you now have all of the in-
put required to calculate the probability-weighted HPRs for all of the 
outcomes. 
(5.14) HPR(T,U) = (1+f*(Z(T,U-Y)/S-1))^P(T,U) 

where 
f = The tested value for f. 
S = The current price of the option. 
Z(T,U-Y) = The theoretical option price if the underlying were at 

price U-Y with time T remaining till expiration. This can discerned by 
whatever pricing model the user deems appropriate. 

P(T,U) = The 1-tailed probability of the underlying being at price U 
by time T remaining till expiration. This can be discerned by whatever 
distributional from the user deems appropriate. 

Y = The difference between the arithmetic mathematical expecta-
tion of the underlying at time T, given by (5.10), and the current price. 

You should note that the distributional form used for the variable 
P(T, U) need not be the same distributional form used by the pricing 
model employed to discern the values for Z(T, U-Y). For example, sup-
pose you are using the Black-Scholes stock option model to discern the 
values for Z(T, U-Y). This model assumes a lognormal distribution of 
price changes. However, you can correctly use another distributional 
form to determine the corresponding P(T, U). Literally, this translates as 
follows: You know that if the underlying goes to price U, the option's 
price will tend to that value given by Black-Scholes. Yet the probability 
of the underlying going to price U from here is greater than the log-
normal distribution would indicate. 

Step 7 Now you can begin the process of finding the optimal f. 
Again you can do this by iteration, by looping through all of the possible 
f values between 0 and 1, by parabolic interpolation, or by any other 
one-dimensional search algorithm. By plugging the test values for f into 
the HPRs (and you have an HPR for each of the possible price incre-
ments between +3 and -3 standard deviations on the expiration date or 
mandated exit date) you can find your geometric mean for a given test 
value of f. The way you now obtain this geometric mean is to multiply 
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all Of these HPRs together and then take the resulting product to the 
power of 1 divided by the sum of the probabilities: 
(5.18a) G(f,T) = {∏[U = -3SD,+3SD]HPR(T,U)}^(1/∑[U = -
3SD,+3SD]P(T,U)) 

Therefore: 
(5.18b) G(f,T) = {∏[U = -3SD,+3SD](l+f*(Z(T,U-
Y)/S1))^P(T,U)}^(1/∑[U = -3SD,+3SD]P(T,U)) 

where 
G(f, T) = The geometric mean HPR for a given test value for f and a 

given time remaining till expiration from a mandated exit date. 
f = The tested value for f. 
S = The current price of the option. 
Z(T,U-Y) = The theoretical option price if the underlying were at 

price U -Y with time T remaining till expiration. This can be discerned 
by whatever pricing model the user deems appropriate. 

P(T,U) = The probability of the underlying being at price U by time 
T remaining till expiration. This can be discerned by whatever distribu-
tional form the user deems appropriate. 

Y = The difference between the arithmetic mathematical expecta-
tion of the underlying at time T, given by (5.10), and the current price. 

The value for f that results in the greatest geometric mean is the 
value for f that is optimal. 

We can optimize for the optimal mandated exit date as well. In other 
words, say we want to find what the optimal f is for a given option for 
each day between now and expiration. That is, we run this procedure 
over and lover, starting with tomorrow as the mandated exit date and 
finding the optimal f, then starting the whole process over again with the 
next day as the mandated exit date. We keep moving the mandated exit 
date forward until the mandated exit date is the expiration date. We 
record the optimal fs and geometric means for each mandated exit date. 
When we are through with this entire procedure, we can find the man-
dated exit date that results in the highest geometric mean. Now we know 
the date by which we must be out 

of the option position by in order to have the highest mathematical 
expectation (i.e., the highest geometric mean). We also know how many 
contracts to buy by using the f value that corresponds to the highest- 
geometric mean. We now have a mathematical technique whereby we 
can blindly go out and buy an option and (as long as we are out of it by 
the mandated exit date that has the highest geometric mean-provided 
that it is greater than 1.0, of course-and buy the number of contracts 
indicated by the optimal f corresponding to that highest geometric 
mean) be in a positive mathematical expectation. Furthermore, these are 
geometric positive mathematical expectations. In other words, the geo-
metric mean (minus 1.0) is the mathematical expectation when you are 
reinvesting returns. (The true arithmetic positive mathematical expecta-
tion would of course be higher than the geometric.) Once you know the 
optimal f for a given option, you can readily turn this into how many 
contracts to buy based on the following equation: 
(5.19) K = INT(E/(S/f)) 

where 
K = The optimal number of option contracts to buy. 
f = The value for the optimal f (0 to 1). 
S = the current price of the option. 
E = The total account equity. 
INT() = The integer function. 
The answer derived from this equation must be "floored to the inte-

ger." In other words, for example, if the answer is to buy 4.53 contracts, 
you would buy 4 contracts. We can determine the TWR for the option 
trade. To do so we must know how many times we would perform this 
same trade over and over. In other words, if our geometric mean is 
1.001 and we want to find the TWR that corresponds to make this same 
play over and over 100 times, our TWR would be 1.001 ^ 100 = 
1.105115698. We would therefore expect to make 10.3115698% on our 
stake if we were to make this same options play 100 times over. The 
formula to convert from a geometric mean to a TWR was given as 
Equation (4.18): 
(4.18) TWR = Geometric Mean^X 

where 

TWR = The terminal wealth relative. 
X = However many times we want to "expand" this play out. That 

is, what we would expect to make if we invested f amount into these 
possible scenarios X times. 

Further, we can determine our other by-products, such as the geo-
metric mathematical expectation, as the geometric mean minus 1. If we 
take the biggest loss possible (the cost of the option itself), divide this 
by the optimal f, and multiply the result by the geometric mathematical 
expectation, the result will yield the geometric average trade. As you 
have seen, when applied to options positions such as this, the optimal f 
technique has the added by-product of discerning what the optimal exit 
date is. 

We have discussed the options position in its pure form, devoid of 
any underlying bias we may have in the direction of the price of the 
underlying. For a mandated exit date, the points of 3 standard deviations 
above and below are calculated from the current price. This assumes 
that we know nothing of the future direction of the underlying. Accord-
ing to the mathematical pricing models, we should not be able to find 
positive arithmetic mathematical expectations if we were to hold these 
options to expiration. However, as we have seen, through the use of this 
technique it is possible to find positive geometric mathematical expecta-
tions if we put on a certain quantity and exit the position on a certain 
date. 

If you have a bias toward the direction of the underlying, that can 
also be incorporated. Suppose we are looking at options on a particular 
underlying instrument, which is currently priced at 100. Further suppose 
that our bias, generated by our analysis of this market, suggests a price 
of 105 by the expiration date, which is 40 market days from now. We 
expect the price to rise by 5 points in 40 days. If we assume a straight-
line basis for this advance, we can state that the price should rise, on 
average, .125 points per market day. Therefore, for the mandated exit 
day of tomorrow, we will figure a value of U of 100.125. For the next 
mandated exit date, U will be 100.25. Finally, by the time that the man-
dated exit date is the expiration date, U will be 105. If the underlying is 
a stock, you should subtract the dividends from this adjusted U via 
Equation (5.04). The bias is applied to the process by having a different 
value for U each day because of our forecast. Because they affect the 
outcomes of Equations (5.17a) and (5.17b), these different values for U 
will dramatically affect our optimal f and by-product calculations. No-
tice that because Equations (5.17a) and (5.17b) are affected by the new 
value for U each day, there is an automatic equalization of the data. 
Hence, the optimal f's we obtain are based on equalized data. 

As you work with this optimal f idea and options, you will notice 
that each day the numbers change. Suppose you buy an option today at a 
certain price that has a given mandated exit date. Suppose the option has 
a different price after tomorrow. If you run the optimal f procedure 
again on this new option, it, too, may have a positive mathematical ex-
pectation and a different mandated exit date. What does this mean? 

The situation is analogous to a horse race where you can still place 
bets after the race has begun, until the race is finished. The odds change 
continuously, and you can cash your ticket at any time, you need not 
wait until the race is over. Say you bet $2 on a horse before the race 
begins, based on a positive mathematical expectation that you have for 
that horse, and the horse is running next to last by the first turn. You 
make time stop (because you can do that in hypothetical situations) and 
now you look at the tote board. Your $2 ticket on this horse is now only 
worth S 1.50. You determine the mathematical expectation on your 
horse again, considering how much of the race is already finished, the 
current odds on your horse, and where it presently is in the field. You 
determine that the current price of that $1.50 ticket on your horse is 10% 
undervalued. Therefore, since you could cash your 82 ticket that you 
bought before the race for S 1.50 right now, taking a loss, and you could 
also purchase the $1.50 ticket on the horse right now with a positive 
mathematical expectation, you do nothing. The current situation is thus 
that you have a positive mathematical situation, but on the basis of a 
$l.50 ticket not a $2 ticket. 

This same analogy holds for our option trade, which is now slightly 
underwater but has a positive mathematical expectation on the basis of 
the new price. You should use the new optimal f on the new price, ad-
justing your current position if necessary, and go with the new optimal 
exit date. In so doing, you will have incorporated the latest price infor-
mation about the underlying instrument. Often, doing this may have you 
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take the position all the way into expiration. There are many inevitable 
losses along the way by following this technique of optimal f on options. 

Why you should be able to find positive mathematical expectations 
in options that are theoretically fairly priced in the first place may seem 
like a paradox or simply quackery to you. However, there is a very valid 
reason why this is so: Inefficiencies are a function of your frame of 
reference. Let's start by stating that theoretical option prices as returned 
by the models do not give a positive mathematical expectation (arithme-
tic) to either the buyer or seller. In other words, the models are theoreti-
cally fair. The missing caveat here is "if held till expiration." It is this 
missing caveat that allows an option to be fairly priced per the models, 
yet have a positive expectation if not held till expiration. 

Consider that options decay at the rate of the square root of the time 
remaining till expiration. Thus, the day with the least expected time 
premium decay will always be the first day you are in the option. Now 
consider Equations (5.17a) and (5.17b), the price corresponding to a 
move of X standard deviations after so much time has elapsed. Notice 
that each day the window returned by these formulas expands, but by 
less and less. The day of the greatest rate of expansion is the first day in 
the option. 

Thus, for the first day in the option, the time premium will shrink 
the least, and the window of X standard deviations will expand the fast-
est. The less the time decay, the more likely we are to have a positive 
expectation in a long option. Further, the wider the window of X stan-
dard deviations, the more likely we are to have a positive expectation, as 
the downside is fixed with an option but the upside is not. There is a 
constant tug-of-war going on between the window of X standard devia-
tions getting wider and wider with each passing day (at a slower and 
slower rate, though) and time decaying the premium faster and faster 
with each passing day. 

What happens is that the first day sees the most positive mathemati-
cal expectation, although it may not be positive. In other words, the 
mathematical expectation (arithmetic and geometric) is greatest after 
you have been in the option 1 day (it's actually greatest the first instant 
you put on the option and decays gradually thereafter, but we are look-
ing at this thing at discrete intervals-each day's close). Each day thereaf-
ter the expectation gets lower, but at a slower rate. 

The following table depicts this decay of expectation of a long op-
tion. The table is derived from the option discussed earlier in this chap-
ter. This is the 100 call option where the underlying is at 100, and it 
expires 911220. The volatility is 20% and it is now 911104. We are 
using the Black commodity option formula (H discerned as in Equation 
(5.07) and R = 5%) and a 260.8875-day year. We are using 8 standard 
deviations to calculate our optimal f's from, and we are using a mini-
mum tick increment of .1 (which will be explained shortly). 
Exit Date  AHPR  GHPR  f  
Tue. 911105  1.000409  1.000195  .0806  
Wed. 911106  1.000001  1 .000000  .0016  
Thu. 911107  <1  <1  0  

The AHPR column is the arithmetic average HPR (the calculation 
of which will be discussed later on in this chapter), and GHPR is the 
geometric mean HPR. The f column is the optimal f from which the 
AHPR and GHPR columns were derived. The arithmetic mathematical 
expectation, as a percentage, is simply the AHPR minus 1, and the geo-
metric mathematical expectation, as a percentage, is the GHPR minus 1. 

Notice that the greatest mathematical expectations occur on the day 
after we put the option on (although this example has a positive mathe-
matical expectation, not all options will show a positive mathematical 
expectation). Each day thereafter the expectations themselves decay. 
The rate of decay also gets slower and slower each day. After 911106 
the mathematical expectations (HPR-1) go negative. 

Therefore, if we wanted to trade on this information, we could elect 
to enter today (911104) and exit on the close tomorrow (911105). The 
fair option price is 2.861. If we assume it is traded at a price of $100 per 
full point, the cost of the option is 2.861*$100 = $286.10. Dividing this 
price by the optimal f of .0806 tells us to buy one option for every 
$3,549.63 in equity. If we wanted to hold the option till the close of 
911106, the last day that still has a positive mathematical expectation, 
we would have to initiate the position today using the f value corre-
sponding to the optimal for an exit 911106 of .0016. We would there-
fore enter today (911104) with 1 contract for every $178,812.50 in ac-
count equity ($286.10/ .0016). Notice that to do so has a much lower 

expectation than if we entered with 1 contract for every 33,549.63 in 
account equity and exited on the close tomorrow, 911105.  

The rate of change between the two functions, time premium de-
cay and the expanding window of X standard deviations, may create a 
positive mathematical expectation for being long a, given option. This 
expectation is at its greatest the first instant in the position and de-
clines at a decreasing rate from there. Thus, an option that is priced 
fairly to expiration based on the models can be found to have a positive 
expectation if exited early on in the premium decay. 

The next table looks at this same 100 call option again, only this 
time we look at it using different-sized windows (different amounts of 
standard deviations):  
Number of Standard Deviations 
 2  3  5  8  10  
AHPR  1.000102  1.000379  1.000409  1.000409  1.000409  
GHPR  1.000047  1.00018  1.000195  1.000195  1.000195  
f .043989  .0781  .0806  .0806  .0806  
Cutoff  911105  911105  911106  911106  911106  

The AHPR and GHPR pertain to the arithmetic and geometric HPRs 
at the optimal f values if you exit the trade on the close of 911105 (the 
most opportune date to exit, because it has the highest AHPR and 
GHPR). The f corresponds to the optimal f for 911105. The heading 
Cutoff pertains to the last date when a positive expectation (i.e., AHPR 
and GHPR both greater than 1) exists. 

The interesting point to note is that the four values AHPR, GHPR, f, 
and Cutoff all converge to given points as we increase the number of 
standard deviations toward infinity. Beyond 5 standard deviations the 
values hardly change at all. Beyond 8 standard deviations they seem to 
stop changing. The tradeoff in using more standard deviations is that 
extra computer time is required. This seems a small price to pay, but as 
we get into multiple simultaneous positions in this chapter, you will 
notice that each additional leg of a multiple simultaneous position in-
creases the time required exponentially. For one leg we can argue that 
using 8 standard deviations is ideal. However, for more than one leg 
simultaneously, we may find it necessary to trim back this number of 
standard deviations. Furthermore, this 8 standard deviation rule applies 
only when we assume Normality in the logs of price changes. 

THE SINGLE SHORT OPTION 
Everything stated about the single long option holds true for a single 

short option position. The only difference is in regard to Equation 
(5.14): 
(5.14) HPR(T,U) = (1+f*(Z(T,U-Y)/S-1))^P(T,U) 

where 
HPR(T,U) = The HPR for a given test value for T and U. 
f = The tested value for f. 
S = The current price of the option. 
Z(T,U-Y) = The theoretical option price if the underlying were at 

price U with time T remaining till expiration. 
P(T,U) = The probability of the underlying being at price U by time 

T remaining till expiration. 
Y = The difference between the arithmetic mathematical expecta-

tion of the underlying at time T, given by (5.10), and the current price. 
For a single short option position this equation now becomes: 

(5.20) HPR(T,U) = (1+f*(1-Z(T,U-Y)/S))^P(T,U) 
where 
HPR(T,U) = The HPR for a given test value for T and U. 
f = The tested value for f. 
S = The current price of the option. 
Z(T,U-Y) = The theoretical option price if the underlying 
were at price U with time T remaining till expiration. 
P(T,U) = The probability of the underlying being at price U by time 

T remaining till expiration. 
Y = The difference between the arithmetic mathematical expecta-

tion of the underlying at time T, given by (5.10), and the current price. 
You will notice that the only difference between Equation (5.14), 

the equation for a single long option position, and Equation (5.20), the 
equation for a single short option position, is in the expression (Z(T,U-
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Y)/S-1), which becomes (1-Z(T,U-Y)/S) for the single short option posi-
tion. Aside from this change, everything else detailed about the single 
long option position holds for the single short option position. 

THE SINGLE POSITION IN THE UNDERLYING INSTRU-
MENT 

In Chapter 3 we detailed the math of finding the optimal f paramet-
rically. Now we can use the same method as with a single long option, 
only our calculation of the HPR is taken from Equation (3.30). 
(3.30) HPR(U) = (1+(L/(W/(-f))))^P 

where 
HPR(U) = The HPR for a given U. 
L = The associated P&L. 
W = The worst-case associated P&L in the table (this will always be 

a negative value). 
f = The tested value for f. 
P = The associated probability. 
The variable L, the associated P&L, is discerned by taking the price 

of the underlying at a given price U, minus the price at which the trade 
was initiated, S, for a long position. 
(5.21a) L for a long position = U-S 

For a short position, the associated P&L is figured just the reverse: 
(5.21b) L for a short position = S-U 

where 
S = The current price of the underlying instrument. 
U = The price of the underlying instrument for this given HPR. 
We could also figure the optimal f for a single position in the under-

lying instrument using Equation (5.14). When doing so we must realize 
that the optimal f returned can be greater than 1. 

For example, consider an underlying instrument at a price of 100. 
We determine that the five following outcomes might occur: 
Outcome  Probability  P&L  
110  .15  10  
105  .30  5  
100  .50  0  
95  .25  -5  
90  .10  -10  

Note that per Equation (5.10), our arithmetic mathematical expecta-
tion on the underlying is 100.5769230 77. This means that the variable 
Y in (5.14) is equal to .576923077 since 100.576923077-100 = 
.576923077. 

If we were to figure the optimal f using the P&L column and the 
Equation (3.30) method, we derive an f of .19, or 1 unit for every $52.63 
in equity. 

If instead we used Equation (5.14) on the outcome column, whereby 
the variable S is therefore equal to 100, and we do not subtract the value 
of Y, the arithmetic mathematical expectation of the underlying minus 
its current value from U in discerning our Z(T, U -Y) variable, we find 
our optimal fat approximately 1.9. This translates again into 1 unit for 
every $52.63 in equity as 100/1.9 = 52.63. 

On the other hand, if we subtract the value of Y, the arithmetic 
mathematical expectation on the underlying per Equation (5.10), in the 
Z(T, U-Y) term of (5.14) we end up with a mathematical expectation on 
the underlying equal to its current value, and therefore we do not have 
an optimal f. This is what we must do, subtract the value of Y in the 
Z(T, U-Y) term of Equation (5.14) in order to be consistent with the 
options calculations as well as the put/call parity formula. 

If we are using the Equation (3.30) method instead of the Equation 
(5.14) method, then each value for U in (5.21a) and (5.21b) must have 
the arithmetic mathematical expectation of the underlying, Y, subtracted 
from it. That is, we must subtract the value of Y from each P&L. Doing 
so again yields a situation where there is not a positive mathematical 
expectation, and therefore there is no value for f that is optimal. 

Literally, this means only that if we blindly go out and take a posi-
tion in the underlying instrument, we do not get a positive mathematical 
expectation (as we do with some options), and therefore there is no f 
that is optimal in this case. We can have an optimal f only if we have a 

positive mathematical expectation. We can have this only if we have a 
bias in the underlying. 

Now we have a methodology that can be used to give us the optimal 
f (and its by-products) for options, whether long or short, as well as 
trades in the underlying instrument (from a number of different meth-
ods). 

Note that the methods used in this chapter to discern the optimal fs 
and by-products for either options or the underlying instrument are 
predicated upon not necessarily using a mechanical system to enter your 
trades. For instance, the empirical method for finding optimal f used an 
empirical stream of trade P&L's generated by a mechanical system. In 
Chapter 3 we learned of a parametric technique to find the optimal f 
from data that was Normally distributed. This same technique can be 
used to find the optimal f from data of any distribution, so long as the 
distribution in question has a cumulative density function. In Chapter 4 
we learned of a method to find the optimal f parametrically for distribu-
tions that do not have a cumulative density function, such as the distri-
bution of trade P&L's (whether a mechanical system is used or not) or 
the scenario planning approach. 

In this chapter we have learned of a method for finding the optimal f 
when not using a mechanical system. You will notice that all of the 
calculations thus far assume that you are, in effect, blindly entering a 
position at some point in time and exiting at some unknown future point. 
Usually the method is shown where there isn't a bias in the price of the 
underlying -that is, the method is shown devoid of any price forecast in 
the underlying. We have seen however, that we can incorporate our 
price forecast into the process simply by changing the value of the un-
derlying used as input into the Equations (5.17a and 5.17b) each day as 
the trade progresses. Even a slight bias changes the expectation function 
dramatically. The optimal exit date may now very well not be the mar-
ket day immediately after the entry day. In fact, the optimal exit date 
may well become the expiration day. In such a case, the option has a 
positive mathematical expectation even if held all expiration. Not only is 
the expectation function altered dramatically by even a slight bias in the 
price of the underlying, so, too, are the optimal fs, AHPRs, and GHPRs. 
For instance, the following table is once again derived from the option 
discussed earlier in this chapter. This is the 100 call option where the 
underlying is at 100, and it expires 911220. The volatility is 20% and it 
is now 911104. We are using the Black commodity option formula (H 
discerned as in Equation (5.07) and R = 5%) and a 260.8875-day year. 
We will again use 8 standard deviations to calculate our optimal fs from 
(to be consistent with the previous tables showing no bias in the under-
lying, or bias = 0), and we are using a minimum tick increment of .1. 
Here, however, we will assume a bias of .01 points (one tenth of one 
tick) upward per day in the price of the underlying: 
Exit Date AHPR  GHPR  f  
Tue. 911105  1.000744  1.000357  .1081663  
Wed. 911106  1.000149  1.000077  .0377557  
Thu. 911107  1.000003  1.000003  .0040674  
Fri. 911108  <1  <1  0  

Notice how simply a tiny .01-point upward bias per day changes the 
results. Our optimal exit date is still 911105, and our optimal f is 
.1081663, which translates into 1 contract for every $2,645.00 in ac-
count equity (2.861*100/.1081663). Also notice that a positive expecta-
tion is obtained in this option all the way until the close of 911107. Had 
we had a stronger bias than simply .01 point upward per day, the results 
would be changed to an even more pronounced degree. 

The last point that needs to be addressed is the cost of commissions. 
In the price of the option obtained with Equation (5.14), the variable 
Z(T, U-Y) must be adjusted downward to reflect the commissions in-
volved in the transaction (if you are charged commissions on the entry 
side also, then you must adjust the variable S in Equation (5.14) upward 
by the amount of the commissions). 

We have covered finding the optimal f and its by-products when we 
are not using a mechanical system. We can now begin to combine mul-
tiple positions. 

MULTIPLE SIMULTANEOUS POSITIONS WITH A 
CAUSAL RELATIONSHIP 

As we begin our discussion of multiple simultaneous positions, it is 
important to differentiate between causal relationships and correlative 
relationships. In the causal relationship, there is a factual, connective 
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explanation of the correlation between two or more items. That is, a 
causal relationship is one where there is correlation, and the correlation 
can be explained or accounted for in some logical, connective fashion. 
This is in contrast to a correlative relationship where there is, of course, 
correlation, but there is no causal, connective, explanation of the corre-
lation. 

As an example of a causal relationship, let's look at put options on 
IBM and call options on IBM. Certainly the correlation between the 
IBM puts and the IBM calls is -1 (or very close to it), but there is more 
to the relationship than simply correlation. We know for a fact that when 
there is upward pressure on IBM rah that there will be downward pres-
sure on the puts (all else remaining constant, including volatility). This 
logical, connective relationship means that there is a causal relationship 
between IBM calls and IBM puts. 

When there is correlation but no cause, we simply say that there is a 
correlative relationship (as opposed to a causal relationship). Usually, 
correlative relationships will not have correlation coefficients whose 
absolute values are close to 1. Usually, the absolute value of the correla-
tion coefficient will be closer to 0. For example, corn and soybeans tend 
to move in tandem. Although their correlation coefficients are not ex-
actly equal to 1, there is still a causal relationship because both markets 
are affected by things that affect the grains. If we look at IBM calls and 
Digital Equipment puts (or calls), we cannot say that the relationship is 
completely a causal relationship. Surely there is somewhat of a causal 
relationship, as both of the underlying stocks are members of the com-
puter group, but just because IBM goes up (or down) is not an absolute 
mandate that Digital Equipment will also. As you can see, there is not a 
fine line that differentiates causal and correlative relationships. 

This "clouding" of causal relationships and those that are simply 
correlative will make our work more difficult. For the time being, we 
will only deal with causal relationships, or what we believe are causal 
relationships. In the text chapter we will deal with correlative relation-
ships, which encompass causal relationships as well. You should be 
aware right now that the techniques mentioned in the next chapter on 
correlative relationships arc also applicable to, or can be used in lieu of, 
the techniques for causal relationships about to be discussed. The re-
verse is not true. That is, it is erroneous to apply the following tech-
niques on causal relationships to relationships that are simply correla-
tive. 

A causal relationship is one where the correlation coefficients be-
tween the prices of two items is 1 or -1. To simplify matters, a causal 
relationship almost always consists of any two tradeable items (stock, 
commodity, option, etc.) that have the same underlying instrument. This 
includes, but is not limited to, options spreads, straddles, strangles, and 
combinations, as well as covered writes or any other position where you 
are using the underlying in conjunction with one or more of its options, 
or one or more options on the same underlying instrument, even if you 
do not have a position in that underlying instrument. 

In its simplest form, multiple simultaneous positions consisting of 
only options (no position in the underlying), when the position is put on 
at a debit, can be solved for by using Equation (5.14). By solved for I 
mean that we can determine the optimal f for the entire position and its 
by-products (including the optimal exit date). The only differences are 
that the variable S will now represent the net of the legs of the position 
at the trade's inception. The variable Z(T, U-Y) will now represent the 
net of the legs at price U by time T remaining till expiration. 

Likewise, multiple simultaneous positions consisting of only op-
tions (no position in the underlying), when the position is put on at a 
credit, can be solved for by using Equation (5.20). Again, we must alter 
the variables S and Z(T, U-Y) to reflect the net of the legs of the posi-
tion. For example, suppose we are looking to put on a long option strad-
dle, the purchase of a put and a call on the same underlying instrument 
with the same strike price and expiration date. Further suppose that the 
optimal f returned by this technique was 1 contract for every $2,000. 
This would mean that for every $2,000 in account equity we should buy 
1 straddle; for every $2,000 in account equity we should buy 1 of the 
puts and 1 of the calls. The optimal f returned by this technique pertains 
to financing 1 unit of the entire position, no matter how large that posi-
tion is. This fact will be true for all the multiple simultaneous techniques 
discussed throughout this chapter. 

We can now devise an equation for multiple simultaneous positions 
involving whether a position in the underlying instrument is included or 

not. We can use this generalized form for multiple simultaneous posi-
tions with a causal relationship: 
(5.22) HPR(T,U) = (1+∑[i = 1,N]Ci(T,U))^P(T,U) 

where 
N = The number of legs in the position. 
HPR(T,U) = The HPR for a given test value for T and U. 
Ci(T,U) = The coefficient of the ith kg at a given value for U, at a 

given time T remaining till expiration: 
For an option leg put on at a debit or a long position in the underly-

ing: 
(5.23a) Ci(T, U) = f*(Z(T, U-Y)/S-l) 

For an option leg put on at a credit or a short position in the underly-
ing: 
(5.23b) Ci(T,U) = f*(1-Z(T,U-Y)/S) 

where 
f = The tested value for f. 
S = The current price of the option or underlying instrument. 
Z(T,U-Y) = The theoretical option price if the underlying 
were at price U with time T remaining till expiration. 
P(T,U) = The probability of the underlying being at price U by time 

T remaining till expiration. 
Y = The difference between the arithmetic mathematical expecta-

tion of the underlying at time T, given by (5.10), and the current price. 
Equation (5.22) can be used if you are planning on putting these 

legs all on at once, one for one, and you only need to iterate for the op-
timal f and optimal exit date of the entire position (that is what is meant 
by "multiple simultaneous positions"). 

For each value of U you will have an HPR given by Equation 
(5.22). For each value for f you will have a geometric mean, composed 
of all of the HPRs per Equation (5.18a): 
(5.18a) G(f,T) = {∏[U = -8SD,8SD]HPR(T,U)}^(1/∑[U = -
8SD,8SD]P(T,U)) 

where 
G(f,T) = The geometric mean HPR for a given test value for f and a 

given time remaining till expiration from a mandated exit date. Those 
values off and T (the values of the optimal f and mandated exit date) 
that result in the highest geometric means, are the ones that you should 
use on the net position of the legs. 

To summarize the entire procedure. We want to find the optimal f 
for each day, using each market day between now and expiration as the 
mandated exit date. For each mandated exit date you will determine 
those discrete prices between plus and minus X standard deviations 
(ordinarily we will let X equal 8) from the base price of the underlying 
instrument. The base price can be the current price of the underlying 
instrument or it can be altered to reflect a particular bias you might have 
regarding that market's direction. You now need to find the value be-
tween 0 and 1 for f that results in the greatest geometric mean HPR, 
using an HPR for each of the discrete prices between plus and minus X 
standard deviations of the base price for that mandated exit date. There-
fore, for each mandated exit date you will have an optimal f and a corre-
sponding geometric mean. The mandated exit date that has the greatest 
geometric mean is the optimal exit date for the position, and the f corre-
sponding to that geometric mean is the f that is optimal. 

The "nesting" of the logic of this procedure is as follows: 
For each mandated exit date (weekday) between now and expiration 

For each value off (until the optimal is found) For each market system 
For each tick between+and-8 std. devs. Determine the HPR 

Finally, you should note that in this section we have been attempt-
ing, among other things, to discern the optimal exit date, which we have 
looked upon as a single date at which to close down all of the legs of the 
position. You can apply the same procedure to determine the optimal 
exit date for each leg in the position. This compounds the number of 
computations geometrically, but it can be accomplished. This would 
alter the logic to appear as: 

For each market system 
For each mandated exit date (weekday) between now and expiration 
For each value off (until the optimal is found) 
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For each market system 
For each tick between +8 and -8 std. devs. 
Determine the HPR 
We have thus covered multiple simultaneous positions with a causal 

relationship. Now we can move on to a similar situation where the rela-
tionship is random. 

MULTIPLE SIMULTANEOUS POSITIONS WITH A RAN-
DOM RELATIONSHIP 

You should be aware that, as with the causal relationships already 
discussed, the techniques mentioned in the next chapter on correlative 
relationships are also applicable to, or can be used in lieu of, the tech-
niques for random relationships about to be discussed. This is not true 
the other way around. That is, it is erroneous to apply the techniques on 
random relationships that follow in this chapter to relationships that are 
correlative (unless the correlation coefficients equal 0). A random rela-
tionship is one where the correlation coefficients between the prices of 
two items is 0. 

A random relationship exists between any two tradeable items 
(stock, futures, options, etc.) whose prices are independent of one an-
other, where the correlation coefficient between the two prices is zero, 
or is expected to be zero in an asymptotic sense. 

When there is a correlation coefficient of 0 between every combina-
tion 062 legs in a multiple simultaneous position, the HPR for the net 
position is given as: 
(5.24) HPR(T,U) = (1+∑[i = 1,N] Ci(T,U))^∏[i = 1,N] Pi(T,U) 

where 
N = The number of legs in the position. 
HPR(T,U) = The HPR for a given test value for T and U. 
Ci(T,U) = The coefficient of the ith leg at a given value for U, at a 

given time remaining till expiration of T: 
For an option leg put on at a debit or a long position in the underly-

ing instrument: 
(5.23a) Ci(T,U) = f*(Z(T,U-Y)/S-1) 

For an option leg put on at a credit or a short position in the underly-
ing instrument: 
(5.23b) Ci(T,U) = f*(l-Z(T,U-Y)/S) 

where 
f = The tested value for f. 
S = The current price of the option. 
Z(T,U-Y) = The theoretical option price if the underlying were at 

price U with time T remaining till expiration. 
Pi(T,U) = The probability of the ith underlying being at price U by 

time remaining till expiration of T. 
Y = The difference between the arithmetic mathematical expecta-

tion of the underlying at time T, given by (5.10), and the current price. 
We can now figure the geometric mean for random relationship 

HPRs as: 
(5.25) C(f,T) = {∏[U1 = -8SD,+ 8SD]...∏[UN = -8SD,+8SD]{(1+∑[i = 
1,N]Ci(T,U))^∏[i = 1,N]Pi(T,U)}}^{1/(∑[U1 = -8SD,+ 8SD]...∑[UN = 
-8SD,+ 8SD]∏[i = 1,N]Pi(T,U))} 

where 
G(f, T) = The geometric mean HPR for a given test value for f and a 

given time remaining till expiration from a mandated exit date. Once 
again, the f and T that result in the greatest geometric mean are optimal. 

The "nesting" of the logic of this procedure is exactly the same as 
with the causal relationships: 

For each mandated exit date (weekday) between now and expiration 
For each value off (until the optimal is found) 
For each market system 
For each tick between +8 and -8 std. devs. 
Determine the HPR 
The only difference between the procedure for solving for random 

relationships and that for causal relationships is that the exponent to 
each HPR in the random relationship is calculated by multiplying to-
gether the probabilities of all of the legs being at the given price of the 

particular HPR. Each of these probability sums used as exponents for 
each HPR are themselves summed so that when all of the HPRs are 
multiplied together to obtain the interim TWR, it can be raised to the 
power of 1 divided by the sum of the exponents used in the HPRs. And 
again, the outer loop of the logic could be mended to accommodate a 
search for the optimal exit date for each leg in the position. 

Complicated as Equation (5.25) looks, it still does not address the 
problem of a linear correlation coefficient between the prices of any two 
components that is not 0. As you can see, solving for the optimal mix-
ture of components is quite a task! In the next few chapters you will see 
how to find the right quantities for each leg in a multiple position-using 
stock, commodities, options, or any other tradeable item-regardless of 
the relationship (causal, random, or correlative). The inputs you will 
need for a given option position in the next chapter are (1) the correla-
tion coefficient of its average daily HPR on a 1-contract basis to each of 
the other positions in the portfolio, and (2) its arithmetic average HPR 
and standard deviation in HPRs. 

Equations (5.14) and (5.20) detailed how to find the HPR for long 
options and short options respectively. Equation (5.18) then showed 
how to turn this into a geometric mean. Now, we can also discern the 
arithmetic mean as: 

For long options, options put on at a debit: 
(5.26a) AHPR = {∑[U = -8SD,+ 8SD]((1+f*(Z(T, U-Y)/S-
1))*P(T,U))}/∑[U1 = -8SD,+ 8SD]P(TU) 

For short options, options put on at a credit: 
(5.26b) AHPR = (∑[U = -8SD,+ 8SD]((1+f*(1-Z(T, U-
Y)/S))*P(T,U))}/∑[U = -8SD,+ 8SD]P(T,U) 

where 
AHPR = The arithmetic average HPR. 
f = The optimal f (0 to 1). 
S = The current price of the option. 
Z(T,U-Y) = The theoretical option price if the underlying were at 

price U with time T remaining till expiration. 
P(T, U) = The probability of the underlying being at price U with 

time T remaining till expiration. 
Y = The difference between the arithmetic mathematical expecta-

tion of the underlying at time T, given by (5.10), and the current price. 
Once you have the geometric average HPR and the arithmetic aver-

age HPR, you can readily discern the standard deviation in HPRs: 
(5.27) SD = (A^2-G^2)^(1/2) 

where 
A = The arithmetic average HPR. 
G = The geometric average HPR. 
SD = The standard deviation in HPRs. 
In this chapter we have leaned of yet another way to calculate op-

timal f. The technique shown was for nonsystem traders and used the 
distribution of outcomes on the underlying instrument by a certain 
date in the future as input. As a side benefit, this approach allows us 
to find the optimal f on both options and for multiple simultaneous 
positions. However, one of the drawbacks of this technique is that the 
relationships between all of the positions must be random or causal 

Does this mean we cannot use the techniques far finding the op-
timal f, discussed in earlier chapters, on multifile simultaneous posi-
tions or options? No-again, which method you choose is a matter of 
utility to you. The methods detailed in this chapter have certain draw-
backs as well as benefits (such as the ability to discern optimal exit 
times). In the next chapter, we will begin to delve into optimal portfo-
lio construction, which will later allow us to perform multiple simul-
taneous positions using the techniques detailed earlier. 

There are many different directions of study we could head off 
into at this function. However, the goal in this text is to study portfo-
lios of different markets, portfolios of different market systems, and 
different tradeable items. This being the case, we will part from the 
trail of theoretical option prices and head in the direction of optimal 
portfolio construction 
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Chapter 6 - Correlative Relationships and 
the Derivation of the Efficient Frontier 

We have now covered finding the optimal quantities to trade for 
futures, stocks, and options, trading them either alone or in tandem 
with another item, when there is either a random or a causal relation-
ship between the prices of the items. That is, we have defined the opti-
mal set when the linear correlation coefficient between any two ele-
ments in the portfolio equals 1, ~1, or 0. Yet the relationships between 
any two elements in a portfolio, whether we look at the correlation of 
prices (in a nonmechanical means of trading) or equity changes (in a 
mechanical system), are rarely at such convenient values of the linear 
correlation coefficient. 

In the last chapter we looked at trading these items from the 
standpoint of someone not using a mechanical trading system. Be-
cause a mechanical trading system was not employed, we were looking 
at the correlative relationship of the prices of the items. 

This chapter provides a method for determining the efficient fron-
tier of portfolios of market systems when the linear correlation coeffi-
cient between any two portfolio components under consideration is 
any value between -1 and 1 inclusive. Herein is the technique em-
ployed by professionals for determining optimal portfolios of stocks. In 
the next chapter we will adapt it for use with any tradeable instrument. 

In this chapter, an important assumption is made regarding these 
techniques. The assumption is that the generating distributions (the 
distribution of returns) have finite variance. These techniques are 
effective only to the extent that the input data used, has finite vari-
ance.1 

DEFINITION OF THE PROBLEM 
For the moment we are dropping the entire idea of optimal f; it will 

catch up with us later. It is easier to understand the derivation of the 
efficient frontier parametrically if we begin from the assumption that we 
are discussing a portfolio of stocks. These stocks are in a cash account 
and are paid for completely. That is, they are not on margin. 

Under such a circumstance, we derive the efficient frontier of port-
folios. That is, for given stocks we want to find those with the lowest 
level of expected risk for a given level of expected gain, the given levels 
being determined by the particular investor's aversion to risk. Hence, 
this basic theory of Markowitz (aside from the general reference to it as 
Modern Portfolio Theory) is often referred to as E-V theory (Expected 
return-Variance of return). Note that the inputs are based on returns. 
That is, the inputs to the derivation of the efficient frontier are the re-
turns we would expect on a given stock and the variance we would ex-
pect of those returns. Generally, returns on stocks can be defined as the 
dividends expected over a given period of time plus the capital apprecia-
tion (or minus depreciation) over that period of time, expressed as a 
percentage gain (or loss). 

Consider four potential investments, three of which are stocks and 
one a savings account paying 8.5% per year. Notice that we are defining 
the length of a holding period, the period we measure returns and their 
variances, as 1 year in this example: 
Investment  Expected Return  Expected Variance of Return  
Toxico  9.5%  10%  
Incubeast Corp.  13%  25%  
LA Garb  21 %  40%  
Savings Account  6.5%  0%  

We can express expected returns as HPR's by adding 1 to them. 
Also, we can express expected variance of return as expected standard 
deviation of return by taking the square root of the variance. In so doing, 
we transform our table to: 
                                                                 
1 For more on this, see Fama, Eugene F., "Portfolio Analysis in a Stable Paretian 
Market," Management Science 11, pp. 404-419, 1965. Fama has demonstrated 
techniques for finding the efficient frontier parametrically for stably distributed 
securities possessing the same characteristic exponent, A, when the returns of the 
components all depend upon a single underlying market index. Headers should be 
aware that other work has been done on determining the efficient frontier when 
there is infinite variance in the returns of the components in the portfolio. These 
techniques are not covered here other than to refer interested readers to pertinent 
articles. For more on the stable Paretian distribution, see Appendix B. For a dis-
cussion of infinite variance, see The Student's Distribution" in Appendix B. 

Investment  Expected Return as 
an HPR  

Expected Standard 
Deviation of Return  

Toxico  1.095  .316227766  
lncubeast Corp.  1.13  .5  
LA Garb  1.21  .632455532  
Savings Account  1.085  0  

The time horizon involved is irrelevant so long as it is consistent for 
all components under consideration. That is, when we discuss expected 
return, it doesn't matter if we mean over the next year, quarter, 5 years, 
or day, as long as the expected returns and standard deviations for all of 
the components under consideration all have the same time frame. (That 
is, they must will be for the next year, or they must all be for the next 
day, and so on.) Expected return is synonymous with potential gains, 
while variance (or standard deviation) in those expected returns is syn-
onymous with potential risk. Note that the model is two-dimensional. In 
other words, we can say that the model can be represented on the upper 
right quadrant of the Cartesian plane (see Figure 6-1) by placing ex-
pected return along one axis (generally the vertical or Y axis) and ex-
pected variance or standard deviation of returns along the other axis 
(generally the horizontal or X axis). There are other aspects to potential 
risk, such as potential risk of (probability of) a catastrophic loss, which 
E-V theory does not differentiate from variance of returns in regards to 
defining potential risk. While this may very well be true, we will not 
address this concept any further in this chapter so is to discuss E-V the-
ory in its classic sense. However, Markowitz himself nearly stated that a 
portfolio derived from E-V theory is optimal only if the utility, the "sat-
isfaction," of the investor is a function of expected return and variance 
in expected return only. Markowitz indicated that investor utility may 
very well encompass moments of the distribution higher than the first 
two (which are what E-V theory addresses), such as skewness and kur-
tosis of expected returns. 
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Figure 6-1 The upper-right quadrant of the Cartesian plane. 

Potential risk is still a far broader and more nebulous thing than 
what we have tried to define it as. Whether potential risk is simply vari-
ance on a contrived sample, or is represented on a multidimensional 
hypercube, or incorporates further moments of the distribution, we try to 
define potential risk to account for our inability to really put our finger 
on it. That said, we will go forward defining potential risk as the vari-
ance in expected returns. However, we must not delude ourselves into 
thinking that risk is simply defined as such. Risk is far broader, and its 
definition far more elusive. 

So the first step that an investor wishing to employ E-V theory must 
make is to quantify his or her beliefs regarding the expected returns and 
variance in returns of the securities under consideration for a certain 
time horizon (holding period) specified by the investor. These parame-
ters can be, arrived at empirically. That is, the investor can examine the 
past history of the securities under consideration and calculate the re-
turns and their variances over the specified holding periods. Again the 
term returns means not only the dividends in the underlying security, 
but any gains in the value of the security as well. This is then specified 
as a percentage. Variance is the statistical variance of the percentage 
returns. A user of this approach would often perform a linear regression 
on the past returns to determine the return (the expected return) in the 
next holding period. The variance portion of the input would then be 
determined by calculating the variance of each past data point from what 
would have been predicted for that past data point (and not from the 
regression line calculated to predict the next expected return). Rather 
than gathering these figures empirically, the investor can also simply 
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estimate what he or she believes will be the future returns and vari-
ances2 in those returns. Perhaps the best way to arrive at these parame-
ters is to use a combination of the two. The investor should gather the 
information empirically, then, if need be, interject his or her beliefs 
about the future of those expected returns and their variances. 

The next parameters the investor must gather in order to use this 
technique are the linear correlation coefficients of the returns. Again, 
these figures can be arrived at empirically, by estimation, or by a com-
bination of the two. 

In determining the correlation coefficients, it is important to use 
data points of the same time frame as was used to determine the ex-
pected returns and variance in returns. In other words, if you are using 
yearly data to determine the expected returns and variance in returns (on 
a yearly basis), then you should use yearly data in determining the corre-
lation coefficients. If you are using daily data to determine the expected 
returns and Variance in returns (on a daily basis), then you should use 
daily data in determining the correlation coefficients, 

It is also very important to realize that we are determining the corre-
lation coefficients of returns (gains in the stock price plus dividends), 
not of the underlying price of the stocks in question. 

Consider our example of four alternative investments-Toxico, In-
cubeast Corp., LA Garb, and a savings account. We designate these with 
the symbols T, I, L, and S respectively. Next we construct a grid of the 
linear correlation coefficients as follows: 
 I  L  S  
T  -.15  .05  0  
I   .25  0  
L    0  

From the parameters the investor has input, we can calculate the co-
variance between any two securities as: 
(6.01) COVa,b = Ra,b*Sa*Sb 

where 
COVa,b = The covariance between the ath security and the bth one. 
Ra,b = The linear correlation coefficient between a and b. 
Sa = The standard deviation of the ath security. 
Sb = The standard deviation of the bth security. 
The standard deviations, Sa and Sb, are obtained by taking the 

square root of the variances in expected returns for securities a and b. 
Returning to our example, we can determine the covariance between 

Toxico (T) and Incubeast (I) as: 
COVT,I = -.15*.10^(1/2)*.25^(1/2) = -.15*.316227766*.5 = -
.02371708245 

Thus, given a covariance and the comprising standard deviations, 
we can calculate the linear correlation coefficient as: 
(6.02) Ra,b = COVa,b/(Sa*Sb) 

where 
COVa,b = The covariance between the ath security and the bth one. 
Ra,b = The linear correlation coefficient between a and b. 
Sa = The standard deviation of the ath security. 
Sb = The standard deviation of the bth security. 
Notice that the covariance of a security to itself is the variance, 

since the linear correlation coefficient of a security to itself is 1: 
(6.03) COVX,X = 1*SX*SX = 1*SX^2 = SX^2 = VX 

where 
COVX,X = The covariance of a security to itself. 
SX = The standard deviation of a security. 
VX = The variance of a security. 
We can now create a table of covariances for our example of four 

investment alternatives: 
 T  I  L  S  
T  .1  -.0237  .01  0  
I  -.0237  .25  .079  0  
L  .01  .079  .4  0  

                                                                 
2 Again estimating variance can be quite tricky. An easier way is to estimate the 
mean absolute deviation, then multiply this by 1.25 to arrive at the standard de-
viation. Now multiplying this standard deviation by itself, squaring it, gives the 
estimated variance. 

s  0  0  0  0  
We now have compiled the basic parametric information, and we 

can begin to state the basic problem formally. First, the sum of the 
weights of the securities comprising the portfolio must be equal to 1, 
since this is being done in a cash account and each security is paid for in 
full: 
(6.04) ∑[i = 1,N]Xi = 1 

where 
N = The number of securities comprising the portfolio. 
Xi = The percentage weighting of the ith security. 
It is important to note that in Equation (6.04) each Xi must be non-

negative. That is, each Xi must be zero or positive. 
The next equation defining what we are trying to do regards the ex-

pected return of the entire portfolio. This is the E in E-V theory. Essen-
tially what it says is that the expected return of the portfolio is the sum 
of the returns of its components times their respective weightings: 
(6.05) ∑[i = 1,N]Ui*Xi = E 

where 
E = The expected return of the portfolio. 
N = The number of securities comprising the portfolio. 
Xi = The percentage weighting of the ith security. 
Ui = The expected return of the ith security. 
Finally, we come to the V portion of E-V theory, the variance in ex-

pected returns. This is the sum of the variances contributed by each 
security in the portfolio plus the sum of all the possible covariances in 
the portfolio. 
(6.06a) V = ∑[i = 1,N]∑[j = 1,N] Xi*Xj*COVi,j 
(6.06b) V = ∑[i = 1,N]∑[j = 1,N]Xi*Xj*Ri,j*Si*Sj 
(6.06c) V = (∑[i = 1,N]Xi^2*Si ^ 2)+2*∑[i = 1,N]∑[j = 
i+1,N]Xi*Xj*COVi,j 
(6.06d) V = (∑[i = 1,N]Xi^2*Si^2)+2*∑[i = 1,N]∑[j = 
i+1,N]Xi*Xj*Ri,j*Si*Sj 

where 
V = The variance in the expected returns of the portfolio. 
N = The number of securities comprising the portfolio. 
Xi = The percentage weighting of the ith security. 
Si = The standard deviation of expected returns of the ith security. 
COVi,j = The covariance of expected returns between the ith secu-

rity and the jth security. 
Ri,j = The linear correlation coefficient of expected returns between 

the ith security and the jth security. 
All four forms of Equation (6.06) are equivalent. The final answer 

to Equation (6.06) is always expressed as a positive number. 
We can now consider that our goal is to find those values of Xi, 

which when summed equal 1, that result in the lowest value of V for a 
given value of E. When confronted with a problem such as trying to 
maximize (or minimize) a function, H(X,Y), subject to another condi-
tion or constraint, such as G(X,Y), one approach is to use the method of 
Lagrange. 

To do this, we must form the Lagrangian function, F(X,Y,L): 
(6.07) F(X,Y,L) = H(X,Y)+L*G(X,Y) 

Note the form of Equation (6.07). It states that the new function we 
have created, F(X,Y,L), is equal to the Lagrangian multiplier, L-a slack 
variable whose value is as yet undetermined-multiplied by the constraint 
function G(X,Y). This result is added to the original function H(X,Y), 
whose extreme we seek to find. 

Now, the simultaneous solution to the three equations will yield 
those points (X1,Y1) of relative extreme: 
FX(X,Y,L) = 0 
FY(X,Y,L) = 0 
FL(X,Y,L) = 0 

For example, suppose we seek to maximize the product of two 
numbers, given that their sum is 20. We will let the variables X and Y 
be the two numbers. Therefore, H(X,Y) = X*Y is the function to be 
maximized given the constraining function G(X,Y) = X+Y-20 = 0. We 
must form the Lagrangian function: 
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F(X,Y,L) = X*Y+L*(X+Y-20) FX(X,Y,L) = Y+L FY(X,Y,L) = X+L 
FL(X,Y,L) = X+Y-20 

Now we set FX(X,Y,L) and FY(X,Y,L) both equal to zero and solve 
each for L: 
Y+L = 0 
Y = -L 

and 
X+L = 0 
X = -L 

Now setting FL(X,Y,L) = 0 we obtain X+Y-20 = 0. Lastly, we re-
place X and Y by their equivalent expressions in terms of L: 
(-L)+(-L)-20 = 0 
2*-L = 20 
L = -10 

Since Y equals -L, we can state that Y equals 10, and likewise with 
X. The maximum product is 10*10 = 100. 

The method of Lagrangian multipliers has been demonstrated here 
for two variables and one constraint function. The method can also be 
applied when there are more than two variables and more than one con-
straint function. For instance, the following is the form for finding the 
extreme when there are three variables and two constraint functions: 
(6.08) F(X,Y,Z,L1,L2) = H(X,Y,Z)+L1*G1(X,Y,Z)+L2*G2(X,Y,Z) 

In this case, you would have to find the simultaneous solution for 
five equations in five unknowns in order to solve for the points of rela-
tive extreme. We will cover how to do that a little later on. 

We can restate the problem here as one where we must minimize V, 
the variance of the entire portfolio, subject to the two constraints that: 
(6.09) (∑[i = 1,N]Xi*Ui)-E = 0 

and 
(6.10) (∑[i = 1,N]Xi) -1 = 0 

where N = The number of securities comprising the portfolio. E = 
The expected return of the portfolio. Xi = The percentage weighting of 
the ith security. Ui = The expected return of the ith security. 

The minimization of a restricted multivariable function can be han-
dled by introducing these Lagrangian multipliers and differentiating 
partially with respect to each variable. Therefore, we express our prob-
lem in terms of a Lagrangian function, which we call T. Let: 
(6.11) T = V+ L1*((∑[i = 1,N]Xi*Ui) -E)+L2*((∑[i = 1,N]Xi)-1) 

where 
V = The variance in the expected returns of the portfolio, from 

Equation (6.06). 
N = The number of securities comprising the portfolio. 
E = The expected return of the portfolio. 
Xi = The percentage weighting of the ith security. 
Ui = The expected return of the ith security. 
L1 = The first Lagrangian multiplier. 
L2 = The second Lagrangian multiplier. 
The minimum variance (risk) portfolio is found by setting the first-

order partial derivatives of T with respect to all variables equal to zero. 
Let us again assume that we are looking at four possible investment 

alternatives: Toxico, Incubeast Corp., LA Garb, and a savings account. 
If we take the first-order partial derivative of T with respect to X1 we 
obtain: 
(6.12) δT/δX1 = 
2*X1*COV1,1+2*X2*COV1,2+2*X3*COV1,2+2*X4*COV1,4+L1*U1+L2 

Setting this equation equal to zero and dividing both sides by 2 
yields: 
X1*COV1,1+X2*COV1,2+X3*COV1,3+X4*COV1,4+.5*L1*U1+.5*L2 = 0 

Likewise: 
δT/δX2 = X1*COV2,1+X2 
+COV2,2+X3*COV2,3+X4*COV2,4+.5*L1*U2+.5*L2 = 0 
δT/δX3 = 
X1*COV3,1+X2*COV3,2+X3*COV3,3+X4*COV3,4+.5*L1*U3+.5*L2 = 0 
δT/δX4 = X1*COV4,1+X2*COV4,2+X3*COV4,3+X4*COV4,4+.5 *L1*U4+ 
.5*L2 = 0 

And we already have δT/δL1 as Equation (6.09) and δT/δL2 as 
Equation (6.10). 

Thus, the problem of minimizing V for a given E can be expressed 
in the N-component case as N+2 equations involving N+2 unknowns. 
For the four-component case, the generalized form is: 
X1*U1 +X2*U2 +X3*U3 +X4*U4   =E
X1 +X2 +X3 +X4   =1
X1*COV1,1 +X2*COV1,2 +X3*COV1,3 +X4*COV1,4 +.5*L1*U1 +.5*L2 =0
X1*COV2,1 +X2*COV2,2 +X3*COV2,3 +X4*COV2,4 +.5*L1*U2 +.5*L2 =0
X1*COV3,1 +X2*COV3,2 +X3*COV3,3 +X4*COV3,4 +.5*L1*U3 +.5*L2 =0
X1*COV4,1 +X2*COV4,2 +X3*COV4,3 +X4*COV4,4 +.5*L1*U4 +.5*L2 =0

where 
E = The expected return of the portfolio. 
Xi = The percentage weighting of the ith security. 
Ui = The expected return of the ith security. 
COVA,B = The covariance between securities A and B. 
L1 = The first Lagrangian multiplier. 
L2 = The second Lagrangian multiplier. 
This is the generalized form, and you use this basic form for any 

number of components. For example, if we were working with the case 
of three components (i.e., N = 3), the generalized form would be: 
X1*U1 +X2*U2 +X3*U3   =E 
X1 +X2 +X3   =1 
X1*COV1,1 +X2*COV1,2 +X3*COV1,3 +.5*L1*U1 +.5*L2 =0 
X1*COV2,1 +X2*COV2,2 +X3*COV2,3 +.5*L1*U2 +.5*L2 =0 
X1*COV3,l +X2*COV3,2 +X3*COV3,3 +.5*L1*U3 +.5*L2 =0 

You need to decide on a level of expected return (E) to solve for, 
and your solution will be that combination of weightings which yields 
that E with the least variance. Once you have decided on E, you now 
have all of the input variables needed to construct the coefficients ma-
trix. 

The E on the right-hand side of the first equation is the E you have 
decided you want to solve for (i.e., it is a given by you). The first line 
simply states that the sum of all of the expected returns times their 
weightings must equal the given E. The second line simply states that 
the sum of the weights must equal 1. Shown here is the matrix for a 
three-security case, but you can use the general form when solving for N 
securities. However, these first two lines are always the same. The next 
N lines then follow the prescribed form. 

Now, using our expected returns and covariances (from the covari-
ance table we constructed earlier), we plug the coefficients into the gen-
eralized form. We thus create a matrix that represents the coefficients of 
the generalized form. In our four-component case (N = 4), we thus have 
6 rows (N+2): 
X1 X2 X3 X4 L2 L2 Answer 
.095 .13 .21 .085   =E 
1 1 1 1   =1 
.1 -.0237 .01 0 .095 1 =0 
-.0237 .25 .079 0 .13 1 =0 
.01 .079 .4 0 .21 1 =0 
0 0 0 0 .085 1 =0 

Note that the expected returns are not expressed in the matrix as 
HPR's, rather they are expressed in their "raw" decimal state. 

Notice that we also have 6 columns of coefficients. Adding the an-
swer portion of each equation onto the right, and separating it from the 
coefficients with a creates what is known as an augmented matrix, 
which is constructed by fusing the coefficients matrix and the answer 
column, which is also known as the right-hand side vector. 

Notice that the coefficients in the matrix correspond to our general-
ized form of the problem: 
X1*U1 +X2*U2 +X3*U3 +X4*U4   =E
X1 +X2 +X3 +X4   =1
X1*COV1,1 +X2*COV1,2 +X3*COV1,1 +X4*COV1,4 +.5*L1*U1 +.5*L2 =0
X1*COV2,1 +X2*COV2,2 +X3*COV2,3 +X4*COV2,4 +.5*L1*U2 +.5*L2 =0
X1*COV3,1 +X2*COV3,2 +X3*COV3,3 +X4*COV3,4 +.5*L1*U3 +.5*L2 =0
X1*COV4,1 +X2*COV4,2 +X3*COV4,3 +X4*COV4,4 +.5*L1*U4 +.5*L2 =0

The matrix is simply a representation of these equations. To solve 
for the matrix, you must decide upon a level for E that you want to solve 
for. Once the matrix is solved, the resultant answers will be the optimal 
weightings required to minimize the variance in the portfolio as a whole 
for our specified level of E. 
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Suppose we wish to solve for E=.14, which represents an expected 
return of 14%.Plugging .14 into the matrix for E and putting in zeros for 
the variables L1 and L2 in the first two rows to complete the matrix gives 
us a matrix of: 
X1 X2 X3 X4 L1 L2 Answer 
.095 .13 .21 .085 0 0 =.14 
1 1 1 1 0 0 =1 
.1 -.0237 .01 0 .095 1 =0 
-.0237 .25 .079 0 .13 1 =0 
.01 .079 .4 0 .21 1 =0 
0 0 0 0 .085 1 =0 

By solving the matrix we will solve the N+2 unknowns in the N+2 
equations. 

SOLUTIONS OF LINEAR SYSTEMS USING ROW-
EQUIVALENT MATRICES 

A polynomial is an algebraic expression that is the sum of one or 
more terms. A polynomial with only one term is called a monomial; 
with two terms a binomial; with three terms a trinomial. Polynomials 
with more than three terms are simply called polynomials. The expres-
sion 4*A^3+A^2+A+2 is a polynomial having four terms. The terms are 
separated by a plus (+) sign. 

Polynomials come in different degrees. The degree of a polynomial 
is the value of the highest degree of any of the terms. The degree of a 
term is the sum of the exponents on the variables contained in the term. 
Our example is a third-degree polynomial since the term 4*A^3 is raised 
to the power of 3, and that is a higher power than any of the other terms 
in the polynomial are raised to. If this term read 4*A^3*B^2*C, we 
would have a sixth-degree polynomial since the sum of the exponents of 
the variables (3+2+1) equals 6. 

A first-degree polynomial is also called a linear equation, and it 
graphs as a straight line. A second-degree polynomial is called a quad-
ratic, and it graphs as a parabola. Third-, fourth-, and fifth-degree poly-
nomials are also called cubics, quartics, and quintics, respectively. Be-
yond that there aren't any special names for higher-degree polynomials. 
The graphs of polynomials greater than second degree are rather unpre-
dictable. Polynomials can have any number of terms and can be of any 
degree. Fortunately, we will be working only with linear equations, first-
degree polynomials here. 

When we have more than one linear equation that must be solved 
simultaneously we can use what is called the method of row-equivalent 
matrices. This technique is also often referred to as the Gauss-Jordan 
procedure or the Gaussian elimination method. 

To perform the technique, we first create the augmented matrix of 
the problem by combining the coefficients matrix with the right-hand 
side vector as we have done. Next, we want to use what are called ele-
mentary transformations to obtain what is known as the identity ma-
trix. An elementary transformation is a method of processing a matrix to 
obtain a different but equivalent matrix. Elementary transformations are 
accomplished by what are called row operations. (We will cover row 
operations in a moment.) 

An identity matrix is a square coefficients matrix where all of the 
elements are zeros except for a diagonal line of ones starting in the up-
per left comer. For a six-by-six coefficients matrix such as we are using 
in our example, the identity matrix would appear as: 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

This type of matrix, where the number of rows is equal to the num-
ber of columns, is called a square matrix. Fortunately, due to the gener-
alized form of our problem of minimizing V for a given E, we are al-
ways dealing with a square coefficients matrix. 

Once an identity matrix is obtained through row operations, it can 
be regarded as equivalent to the starting coefficients matrix. The an-
swers then are read from the right-hand-side vector. That is, in the first 
row of the identity matrix, the 1 corresponds to the variable X1, so the 
answer in the fight-hand side vector for the first row is the answer for 
X1. Likewise, the second row of the right-hand side vector contains the 
answer for X2, since the 1 in the second row corresponds to X2. By 

using row operations we can make elementary transformations to our 
original matrix until we obtain the identity matrix. From the identity 
matrix, we can discern the answers, the weights X1, ..., XN, for the com-
ponents in a portfolio. These weights will produce the portfolio with the 
minimum variance, V, for a given level of expected return, E.3 

Three types of row operations can be performed: 
1. Any two rows may be interchanged.  
2. Any row may be multiplied by any nonzero constant.  
3. Any row may be multiplied by any nonzero constant and added to 
the corresponding entries of any other row. 

Using these three operations, we seek to transform the coefficients 
matrix to an identity matrix, which we do in a very prescribed manner. 

The first step, of course, is to simply start out by creating the aug-
mented matrix. Next, we perform the first elementary transformation by 
invoking row operations rule 2. Here we take the value in the first row, 
first column, which is .095, and we want to convert it to the number 1. 
To do so, we multiply each value in the first row by the constant 1/.095. 
Since any number times 1 divided by that number yields 1, we have 
obtained a 1 in the first row, first column. We have also multiplied every 
entry in the first row by this constant, 1/.095, as specified by row opera-
tions rule 2. Thus, we have obtained elementary transformation number 
1. 

Our next step is to invoke row operations rule 3 for all rows except 
the one we have just used rule 2 on. Here, for each row, we take the 
value of that row corresponding to the column we just invoked rule 2 
on. In elementary transformation number 2, for row 2, we will use the 
value of 1, since that is the value of row 2, column 1, and we just per-
formed rule 2 on column 1. We now make this value negative (or posi-
tive if it is already negative). Since our value is 1, we make it -1. We 
now multiply by the corresponding entry (i.e., same column) of the row 
we just performed rule 2 on. Since we just performed rule 2 on row 1, 
we will multiply this -1 by the value of row 1, column 1, which is 1, 
thus obtaining -1. Now we add this value back to the value of the cell 
we are working on, which is 1, and obtain 0. 

Now on row 2, column 2, we take the value of that row correspond-
ing to the column we just invoked rule 2 on. Again we will use the value 
of 1, since that is the value of row 2, column 1, and we just performed 
rule 2 on column 1. We again make this value negative (or positive if it 
is already negative). Since our value is 1, we make it -1. Now multiply 
by the corresponding entry (i.e., same column) of the row we just per-
formed rule 2 on. Since we just performed rule 2 on row 1, we will mul-
tiply this -1 by the value of row 1, column 2, which is 1.3684, thus ob-
taining -1.3684. Again, we add this value back to the value of the cell 
we are working on, row 2, column 2, which is 1, obtaining 1+(-1.3684) 
= -.3684. We proceed likewise for the value of every cell in row 2, in-
cluding the value of the right-hand side vector of row 2. Then we do the 
same for all other rows until the column we are concerned with, column 
1 here, is all zeros. Notice that we need not invoke row operations rule 3 
for the last row, since that already has a value of zero for column 1. 

When we are finished, we will have obtained elementary transfor-
mation number 2. Now the first column is already that of the identity 
matrix. Now we proceed with this pattern, and in elementary transfor-
mation 3 we invoke row operations rule 2 to convert the value in the 
second row, second column to a 1. In elementary transformation number 
4, we invoke row operations rule 3 to convert the remainder of the rows 
to zeros for the column corresponding to the column we just invoked 
row operations rule 2 on. 

We proceed likewise, converting the values along the diagonals to 
ones per row operations rule 2, then converting the remaining values in 
that column to zeros per row operations rule 3 until we have obtained 
the identity matrix on the left. The right-hand side vector will then be 
our. solution set. 
X1 X2 X3 X4 L1 L2 Answer Explanation 
Starting Augmented Matrix 
.095 .13 .21 .085 0 0 .14  
1 1 1 1 0 0 1  
.1 -.023 .01 0 .095 1 0  

                                                                 
3 That is, these weights will produce the portfolio with a minimum V for a given 
E only to the extent that our inputs of E and V for each component and the linear 
correlation coefficient of every possible pair of components are accurate and 
variance in returns is infinite. 
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X1 X2 X3 X4 L1 L2 Answer Explanation 
-.023 .25 .079 0 .13 1 0  
.01 .079 .4 0 .21 1 0  
0 0 0 0 .085 1 0  
Elementary Transformation Number 1 
1 1.3684 2.2105 .8947 0 0 1.47368 row1*(1/.095) 
1 1 1 1 0 0 1  
0.1 -.023 .01 0 .095 1 0  
-.023 .25 .079 0 .13 1 0  
.01 .079 .4 0 .21 1 0  
0 0 0 0 .085 1 0  
Elementary Transformation Number 2 
1 1.3684 2.2105 .8947 0 0 1.47368  
0 -.368 -1.210 .1052 0 0 -.4736 row2+(-1*row1) 
0 -.160 -.211 -.089 .095 1 -.1473 row3+(-.1*row1) 
0 .2824 .1313 .0212 .13 1 .03492 row4+(.0237*row1) 
0 .0653 .3778 -.008 .21 1 -.0147 row5+(-.01*row1) 
0 0 0 0 .085 1 0  
Elementary Transformation Number 3 
1 1.3684 2.2105 .8947 0 0 1.47368  
0 1 3.2857 -.285 0 0 1.28571 row2*(1/-.36842) 
0 -.160 -.211 -.089 .095 1 -.1473  
0 .2824 .1313 .0212 .13 1 .03492  
0 .0653 .3778 -.008 .21 1 -.0147  
0 0 0 0 .085 1 0  
Elementary Transformation Number 4 
1 0 -2.285 1.2857 0 0 -.2857 row1+(-

1.368421*row2) 
0 1 3.2857 -.285 0 0 1.28571  
0 0 .3164 -.135 .095 1 .05904 row3+(.16054*row2) 
0 0 -.796 .1019 .13 1 -.3282 Сгрока4+(-

.282431*row2) 
0 0 .1632 .0097 .21 1 -.0987 row5+(-.065315*row2)
0 0 0 0 .085 1 0  
Elementary Transformation Number 5 
1 0 -2.285 1.2857 0 0 -.2857  
0 1 3.2857 -.285 0 0 1.28571  
0 0 1 -.427 .3002 3.1602 .18658 row3*(1/.31643) 
0 0 -.796 .1019 .13 1 -.3282  
0 0 .1632 .0097 .21 1 -.0987  
0 0 0 0 .085 1 0  
Elementary Transformation Number 6 
1 0 0 .3080 .6862 7.2233 .14075 row1+(2.2857*row3) 
0 1 0 1.1196 -.986 -1.38 .67265 row2+(-3.28571*row3)
0 0 1 -.427 .3002 3.1602 .18658  
0 0 0 -.238 .3691 3.5174 -.1795 row4+(.7966*row3) 
0 0 0 .0795 .1609 .4839 -.1291 row5+(-.16328*row3) 
0 0 0 0 .085 1 0  
Elementary Transformation Number 7 
1 0 0 .3080 .6862 7.2233 .14075  
0 1 0 1.1196 -.986 -1.38 .67265  
0 0 1 -.427 .3002 3.1602 .18658  
0 0 0 1 -1.545 -14.72 .75192 row4*(1/-.23881) 
0 0 0 .0795 .1609 .4839 -.1291  
0 0 0 0 .085 1 0  
Elementary Transformation Number 8 
1 0 0 0 1.1624 11.760 -.0908 row1+(-.30806*row4) 
0 1 0 0 .7443 6.1080 -.1692 row2+(-

1.119669*row4) 
0 0 1 0 -.360 -3.139 .50819 row3+(.42772*row4) 
0 0 0 1 -1.545 -14.72 .75192  
0 0 0 0 .2839 1.6557 -.1889 row5+(-.079551*row4)
0 0 0 0 .085 1 0  
Elementary Transformation Number 9 
1 0 0 0 1.1624 11.761 -.0909  
0 1 0 0 .7445 6.1098 -.1693  
0 0 1 0 -.361 -3.140 .50823  
0 0 0 1 -1.545 -14.72 .75192  
0 0 0 0 1 5.8307 -.6655 row5*(1/.28396) 
0 0 0 0 0.085 1 0  
Elementary Transformation Number 10 
1 0 0 0 0 4.9831 0.68280 row1+(-1.16248*row5)
0 1 0 0 0 1.7685 0.32620 row2+(-.74455*row5) 
0 0 1 0 0 -1.035 0.26796 row3+(.3610*row5) 
0 0 0 1 0 -5.715 -0.2769 row4+(1.5458trow5) 
0 0 0 0 1 5.8312 -0.6655  
0 0 0 0 0 0.5043 0.05657 row6+(-.085*row5) 
Elementary Transformation Number 11 
1 0 0 0 0 49826 0.68283  

X1 X2 X3 X4 L1 L2 Answer Explanation 
0 1 0 0 0 1.7682 0.32622  
0 0 1 0 0 -1.035 0.26795  
0 0 0 1 0 -5.715 -0.2769  
0 0 0 0 1 5.8312 -0.6655  
0 0 0 0 0 1 0.11217 row6*(1/.50434) 
Elementary Transformation Number 12 
1 0 0 0 0 0 0.12391 row1+(-4.98265*row6)
0 1 0 0 0 0 0.12787 row2+(-1.76821*row6)
0 0 1 0 0 0 0.38407 row3+(1.0352*row6) 
0 0 0 1 0 0 0.36424 row4+(5.7158*row6) 
0 0 0 0 1 0 -1.3197 row5+(-5.83123*row6)
0 0 0 0 0 1 0.11217  
Matrix Obtained 
1 0 0 0 0 0 0.12391 =X1 
0 1 0 0 0 0 0.12787 =X2 
0 0 1 0 0 0 0.38407 =X3 
0 0 0 1 0 0 0.36424 =X4 
0 0 0 0 1 0 -

1.3197/.
5 

=-2.6394=L1 

0 0 0 0 0 1 0.11217/
.5 

=.22434=L2 

INTERPRETING THE RESULTS 
Once we have obtained the identity matrix, we can interpret its 

meaning. Here, given the inputs of expected returns and expected vari-
ance in returns for all of the components under consideration, and given 
the linear correlation coefficients of each possible pair of components, 
for an expected yield of 14% this solution set is optimal. Optimal, as 
used here, means that this solution set will yield the lowest variance for 
a 14% yield. In a moment, we will determine the variance, but first we 
must interpret the results. 

The first four values, the values for X1 through X4, tell us the 
weights (the percentages of investable funds) that should be allocated to 
these investments to achieve this optimal portfolio with a 14% expected 
return. Hence, we should invest 12.391% in Toxico, 12.787% in In-
cubeast, 38.407% in LA Garb, and 36.424% in the savings account. If 
we are looking at investing $50,000 per this portfolio mix: 
Stock  Percentage (*50,000 = ) Dollars to Invest  
Toxico  .12391  $6,195.50  
Incubeast  .12787  $6,393.50  
LA Garb  .38407  $19,203.50  
Savings  .36424  $18,212.00  

Thus, for Incubeast, we would invest $6,393.50. Now assume that 
Incubeast sells for $20 a share. We would optimally buy 319.675 shares 
(6393.5/20). However, in the real world we cannot run out and buy frac-
tional shares, so we would say that optimally we would buy either 319 
or 320 shares. Now, the odd lot, the 19 or 20 shares remaining after we 
purchased the first 300, we would have to pay up for. Odd lots are usu-
ally marked up a small fraction of a point, so we would have to pay 
extra for those 19 or 20 shares, which in turn would affect the expected 
return on our Incubeast holdings, which in turn would affect the optimal 
portfolio mix We are often better off to just buy the round lot-in this 
case, 300 shares. As you can see, more slop creeps into the mechanics of 
this. Whereas we can identify what the optimal portfolio is down to the 
fraction of a share, the real-life implementation requires again that we 
allow for slop. 

Furthermore, the larger the equity you are employing, the more 
closely the real-life implementation of the approach will resemble the 
theoretical optimal. Suppose, rather than looking at $50,000 to invest, 
you were running a fund of $5 million. You would be looking to invest 
12.787% in Incubeast (if we were only considering these four invest-
ment alternatives)? and would therefore be investing 5,000,000*.12787 
= $639,350. Therefore, at $20 a share, you would buy 639,350/20 = 
31,967.8 shares. Again, if you restricted it down to the round lot, you 
would buy 31,900 shares, deviating from the optimal number of shares 
by about 0.2%. Contrast this to the case "where you have $50,000 to 
invest and buy 300 shares versus the optimal of 319.675. There you are 
deviating from the optimal by about 6.5%. 

The Lagrangian multipliers have an interesting interpretation. To 
begin with, the Lagrangians we are using here must be divided by .5 
after the Identity matrix is obtained before we can interpret them. This is 
in accordance with the generalized form of our problem. The L1 variable 
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equals -δV/δE. This means that L1 represents the marginal variance in 
expected returns. In the case of our example, where L1 = -2.6394, we 
can state that V is changing at a rate of -L1, or -(-2.6394), or 2.6394 
units for every unit in E instantaneously at E = .14. 

To interpret the L2 variable requires that the problem first be re-
stated. Rather than having ∑Xi = 1, we will state that ∑Xi = M, where M 
equals the dollar amount of funds to be invested. Then L2 = δV/δM. In 
other words, L2 represents the marginal risk of increased or decreased 
investment. 

Returning now to what the variance of the entire portfolio is, we can 
use Equation (6.06) to discern the variance. Although we could use any 
variation of Equation (6.06a) through (6.06d), here we will use variation 
a: 
(6.06a) V = ∑[i = 1,N]∑[j = 1,N] Xi*Xj*COVi,j 

Plugging in the values and performing Equation (6.06a) gives: 
Xi Xj COVi,j  
0.12391* 0.12391* 0.1 0.0015353688 
0.12391* 0.12787* -0.0237 =-0.0003755116 
0.12391* 0.38407* 0.01 0.0004759011 
0.12391* 0.36424* 0 0 
0.12787* 0.12391* -0.0237 =-0.0003755116 
0.12787* 0.12787* 0.25 0.0040876842 
0.12787* 0.38407* 0.079 0.0038797714 
0.12787* 0.36424* 0 =0 
0.38407* 0.12391* 0.01 =0.0004759011 
0.38407* 0.12787* 0.079 =0.0038797714 
0.38407* 0.38407* 0.4 =0.059003906 
0.38407* 0.36424* 0 =0 
0.36424* 0.12391* 0 =0 
0.36424* 0.12787* 0 =0 
0.36424* 0.38407* 0 =0 
0.36424* 0.36424* 0 =0 
   .0725872809 

Thus, we see that at the value of E = .14, the lowest value for V is 
obtained at V = .0725872809. 

Now suppose we decided to input a value of E = .18. Again, we be-
gin with the augmented matrix, which is exactly the same as in the last 
example of E = .14, only the upper rightmost cell, that is the first cell in 
the right-hand side vector, is changed to reflect this new E of .18: 
X1 X2 X3 X4 L1 L2 Answer 
Starting Augmented Matrix 
.095 .13 .21 .085 0 0 .18 
1 1 1 1 0 0 1 
.1 -.023 0.01 0 .095 1 0 
-.023 .25 .079 0 .13 1 0 
.01 .079 .4 0 .21 1 0 
0 0 0 0 .085 1 0 

Through the use of row operations... the identity matrix is obtained: 
1 0 0 0 0 0 0.21401=X1 
0 1 0 0 0 0 0.22106=X2 
0 0 1 0 0 0 0.66334=X3 
0 0 0 1 0 0 -.0981=X4 
0 0 0 0 1 0 -1.3197/.5=-2.639=L1 
0 0 0 0 0 1 0.11217/.5=.22434=L2 

We then go about solving the matrix exactly as before, only this 
time we get a negative answer in the fourth cell down of the right-hand 
side vector. Meaning, we should allocate a negative proportion, a disin-
vestment of 9.81% in the savings account. 

To account for this, whenever we get a negative answer for any of 
the Xi's-which means if any of the first N rows of the right-hand side 
vector is less than or equal to zero-we must pull that row+2 and that 
column out of the starting augmented matrix, and solve for the new 
augmented matrix. If either of the last 2 rows of the right-hand side 
vector are less than or equal to zero, we don't need to do this. These last 
2 entries in the right-hand side vector always pertain to the Lagrangians, 
no matter how many or how few components there are in total in the 
matrix. The Lagrangians are allowed to be negative. 

Since the variable returning with the negative answer corresponds to 
the weighting of the fourth component, we pull out the fourth column 
and the sixth row from the starting augmented matrix. We then use row 
operations to perform elementary transformations until, again, the iden-
tity matrix is obtained: 
X1 X2 X3 L1 L2 Answer 

Starting Augmented Matrix 
.095 .13 .21 0 0 .18 
1 1 1 0 0 1 
.1 -.023 0.01 .095 1 0 
-.023 .25 .079 .13 1 0 
.01 .079 .4 .21 1 0 

Through the use of row operations... the identity matrix is obtained: 
1 0 0 0 0 0.1283688 =X1 
0 1 0 0 0 0.1904699 =X2 
0 0 1 0 0 0.6811613 =X3 
0 0 0 1 0 -2.38/.5=-4.76 =L1 
0 0 0 0 1 0.210944/.5=.4219 =L2 

When you must pull out a row and column like this, it is important 
that you remember what rows correspond to what variables, especially 
when you have more than one row and column to pull. Again, using an 
example to illustrate, suppose we want to solve for E = .1965. The first 
identity matrix we arrive at will show negative values for the weighting 
of Toxico, X1, and the savings account, X4. Therefore, we return to our 
starting augmented matrix: 
X1 X2 X3 X4 L1 L2 Answer Pertains to
Starting Augmented Matrix 
.095 .13 .21 .085 0 0 .1965 Toxico 
1 1 1 1 0 0 1 Incubeast 
.1 -.023 .01 0 .095 1 0 LA Garb 
-.023 .25 .079 0 .13 1 0 Savings 
.01 .079 .4 0 .21 1 0 L1 
0 0 0 0 .085 1 0 L2 

Now we pull out row 3 and column 1, the ones that pertain to 
Toxico, and also pull row 6 and column 4, the ones that pertain to the 
savings account: 
X2 X3 X4 L1 L2 Answer Pertains to 
Starting Augmented Matrix 
.13 .21 .085 0 0 .1965 Incubeast 
1 1 1 0 0 1 LA Garb 
.25 .079 0 .13 1 0 L1 
.079 .4 0 .21 1 0 L2 

So we will be working with the following matrix: 
X2 X3 X4 L1 L2 Answer Pertains to 
Starting Augmented Matrix 
.13 .21 .085 0 0 .1965 Incubeast 
1 1 1 0 0 1 LA Garb 
.25 .079 0 .13 1 0 L1 
.079 .4 0 .21 1 0 L2 

Through the use of row operations ... the identity matrix is obtained: 
1 0 0 0 .169 Incubeast 
0 1 0 0 .831 LA Garb 
0 0 1 0 -2.97/.5=-5.94 L1 
0 0 0 1 .2779695/.5=.555939 L2 

Another method we can use to solve for the matrix is to use the in-
verse of the coefficients matrix. An inverse matrix is a matrix that, when 
multiplied by the original matrix, yields the identity matrix. This tech-
nique will be explained without discussing the details of matrix multi-
plication. 

In matrix algebra, a matrix is often denoted with a boldface capita] 
letter. For example, we can denote our coefficients matrix as C. The 
inverse to a matrix is denoted as superscripting -1 to it. The inverse 
matrix to C then is C-1. 

To use this method, we need to first discern the inverse matrix to 
our coefficients matrix. To do this, rather than start by augmenting the 
righthand-side vector onto the coefficients matrix, we augment the iden-
tity matrix itself onto the coefficients matrix. For our 4-stock example: 
Starting Augmented Matrix 
X1 X2 X3 X4 L1 L2 Identity Matrix 
0.095 0.13 0.21 0.085 0 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 1 0 0 0 0 
0.1 -0.023 0.01 0 0.095 1 0 0 1 0 0 0 
-0.023 0.25 0.079 0 0.13 1 0 0 0 1 0 0 
0.01 0.079 0.4 0 0.21 1 0 0 0 0 1 0 
0 0 0 0 0.085 1 0 0 0 0 0 1 

Now we proceed using row operations to transform the coefficients 
matrix to an identity matrix. In the process, since every row operation 
performed on the left is also performed on the right, we will have trans-
formed the identity matrix on the right-hand side into the inverse matrix 
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C-r, of the coefficients matrix C. In our example, the result of the row 
operations yields: 
C C-1 
1 0 0 0 0 0 2.2527 -0.1915 10.1049 0.9127 -1.1370 -9.8806 
0 1 0 0 0 0 2.3248 -0.1976 0.9127 4.1654 -1.5726 -3.5056 
0 0 1 0 0 0 6.9829 -0.5935 -1.1370 -1.5726 0.6571 2.0524 
0 0 0 1 0 0 -11.5603 1.9826 -9.8806 -3.5056 2.0524 11.3337
0 0 0 0 1 0 -23.9957 2.0396 2.2526 2.3248 6.9829 -11.5603
0 0 0 0 0 1 2.0396 -0.1734 -0.1915 -0.1976 -0.5935 1.9826 

Now we can take the inverse matrix, C-i, and multiply it by our 
original right-hand side vector. Recall that our right-hand side vector is: 
E  
S  
0  
0  
0  
0  

Whenever we multiply a matrix by a columnar vector (such as this) 
we multiply all elements in the first column of the matrix by the first 
element in the vector, all elements in the second column of the matrix 
by the second element in the vector, and so on. If our vector were a row 
vector, we would multiply all elements in the first row of the matrix by 
the first element in the vector, all elements in the second row of the 
matrix by the second element in the vector, and so on. Since our vector 
is columnar, and since the last four elements are zeros, we need only 
multiply the first column of the inverse matrix by E (the expected return 
for the portfolio) and the second column of the inverse matrix by S, the 
sum of the weights. This yields the following set of equations, which we 
can plug values for E and S into and obtain the optimal weightings. In 
our example, this yields: 
E*2.2527+S*-0.1915 = Optimal weight for first stock 
E*2.3248+S*-0.1976 = Optimal weight for second stock 
E*6.9829+S*-0.5935 = Optimal weight for third stock 
E*-11.5603+S*1.9826 = Optimal weight for fourth stock 
E*-23.9957+S*2.0396 = .5 of first Lagrangian 
E*2.0396+S*-0.1734 = .5 of second Lagrangian 

Thus, to solve for an expected return of 14% (E = .14) with the sum 
of the weights equal to 1: 
.14*2.2527+1*-0.1915 = .315378-.1915 = .1239 Toxico 
.14*2.3248+1*-0.1976 = .325472-.1976 = .1279 Incubeast 
.14*6.9829+1*-0.5935 = .977606-.5935 = .3841 LA Garb 
.14*-11.5603+1*1.9826 = -1.618442+1.9826 = .3641 Savings 
.14*-23.9957+1*2.0396 = -3.359398+2.0396 = -1.319798*2 = -2.6395 
L1 
.14*2.0396+1 *-0.1734 = .285544-.1734 = .1121144*2 = .2243L2 

Once you have obtained the inverse to the coefficients matrix, you 
can quickly solve for any value of E provided that your answers, the 
optimal weights, are all positive. If not, again you must create the coef-
ficients matrix without that item, and obtain a new inverse matrix. 

Thus far we have looked at investing in stocks from the long side 
only How can we consider short sale candidates in our analysis? 

To begin with, you would be looking to sell short a stock if you ex-
pected it would decline. Recall that the term "returns" means not only 
the dividends in the underlying security, but any gains in the value of 
the security as well. This figure is then specified as a percentage. Thus, 
in determining the returns of a short position, you would have to esti-
mate what percentage gain you would expect to make on the declining 
stock, and from that you would then need to subtract the dividend 
(however many dividends go ex-date over the holding period you are 
calculating your E and V on) as a percentage.4 Lastly, any linear corre-
lation coefficients of which the stock you are looking to short is a mem-
ber must be multiplied by -1. Therefore, since the linear correlation 
coefficient between Toxico and Incubeast is -.15, if you were looking to 
short Toxico, you would multiply this by -1. In such a case you would 
use -.15*-1 = .15 as the linear correlation coefficient. If you linear look-
ing to short both of these stocks, the linear correlation coefficient be-

                                                                 
4 In this chapter we are assuming that all transactions are performed in a cash 
account. So, though a short position is required to be performed in a margin ac-
count as opposed to a cash account, we will not calculate interest on the margin. 

tween the two would be -.15*-1*-1 = -.15. In other words, if you are 
looking to short both stocks, the linear correlation coefficient between 
them remains unchanged, as it would if you were looking to go long 
both stocks. 

Thus far we have sought to obtain the optimal portfolio, and its 
variance V, when we know the expected return, E, that we seek. We can 
also solve for E when we know V. The simplest way to do this is by 
iteration using the techniques discussed thus far in this chapter. 

There is much more to matrix algebra than is presented in this 
chapter. There are other matrix algebra techniques to solve systems of 
linear equations. Often you will encounter reference to techniques 
such as Cramer's Rule, the Simplex Method, or the Simplex Tableau. 
These are techniques similar to the ones described in this chapter, 
although more involved. There are a multitude of applications in 
business and science for matrix algebra, and the topic is considerably 
involved We have only etched the surface, just enough for what we 
need to accomplish. For a more detailed discussion of matrix algebra 
and its applications in business and science, the reader is referred to 
Sets, Matrices, and Linear Programming, by Robert L. Childness. 

The next chapter covers utilizing the techniques detailed in this 
chapter for any tradeable instrument, as well as stocks, while incorpo-
rating optimal f, as well as a mechanical system. 
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Chapter 7 - The Geometry of Portfolios 
We have now covered how to find the optimal fs for a given mar-

ket system from a number of different standpoints. Also, we have seen 
how to derive the efficient frontier. In this chapter we show how to 
combine the two notions of optimal f and, the efficient frontier to ob-
tain a truly efficient portfolio for which geometric growth is maxi-
mized. Furthermore, we will delve into an analytical study of the ge-
ometry of portfolio construction. 

THE CAPITAL MARKET LINES (CMLS) 
In the last chapter we saw how to determine the efficient frontier pa-

rametrically. We can improve upon the performance of any given port-
folio by combining a certain percentage of the portfolio with cash. Fig-
ure 7-1 shows this relationship graphically. 
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Figure 7-1 Enhancing returns with the risk-free asset. 

In Figure 7-1, point A represents the return on the risk-free asset. 
This would usually be the return on 91-day Treasury Bills. Since the 
risk, the standard deviation in returns, is regarded as nonexistent, point 
A is at zero on the horizontal axis. 

Point B represents the tangent portfolio. It is the only portfolio lying 
upon the efficient frontier that would be touched by a line drawn from 
the risk-free rate of return on the vertical axis and zero on the horizontal 
axis. Any point along line segment AB will be composed of the portfo-
lio at point B and the risk-free asset. At point B, all of the assets would 
be in the portfolio, and at point A all of the assets would be in the risk-
free asset. Anywhere in between points A and B represents having a 
portion of the assets in both the portfolio and the risk-free asset. Notice 
that any portfolio along line segment AB dominates any portfolio on the 
efficient frontier at the same risk level, since being on the line segment 
AB has a higher return for the same risk. Thus, an investor who wanted 
a portfolio less risky than portfolio B would be better off to put a portion 
of his or her investable funds in portfolio B and a portion in the risk-free 
asset, as opposed to owning 100% of a portfolio on the efficient frontier 
at a point less risky than portfolio B. The line emanating from point A, 
the risk-free rate on the vertical axis and zero on the horizontal axis, and 
emanating to the right, tangent to one point on the efficient frontier, is 
called the capital market line (CML). To the right of point B, the CML 
line represents portfolios where the investor has gone out and borrowed 
more money to invest further in portfolio B. Notice that an investor who 
wanted a portfolio with a greater return than portfolio B would be better 
off to do this, as being on the CML line right of point B dominates (has 
higher return than) those portfolios on the efficient frontier with the 
same level of risk. 

Usually, point B will be a very well-diversified portfolio. Most port-
folios high up and to the right and low down and to the left on the effi-
cient frontier nave very few components. Those in the middle of the 
efficient frontier, where the tangent point to the risk-free rate is, usually 
are very well diversified. 

It has traditionally been assumed that all rational investors will want 
to get the greatest return for a given risk and take on the lowest risk for a 
given return. Thus, all investors would want to be somewhere on the 
CML line. In other words, all investors would want to own the same 
portfolio, only with differing degrees of leverage. This distinction be-

tween the investment decision and the financing decision is known as 
the separation theorem.1 

We assume now that the vertical scale, the E in E-V theory, repre-
sents the arithmetic average HPR (AHPR) for the portfolios and the 
horizontal, or V, scale represents the standard deviation in the HPRs. 
For a given risk-free rate, we can determine where this tangent point 
portfolio on our efficient frontier is, as the coordinates (AHPR, V) that 
maximize the following function are: 
(7.01a) Tangent Portfolio = MAX{(AHPR-(1+RFR))/SD} 

where 
MAX{} = The maximum value. 
AHPR = The arithmetic average HPR. This is the E coordinate of a 

given portfolio on the efficient frontier. 
SD = The standard deviation in HPRs. This is the V coordinate of a 

given portfolio on the efficient frontier. 
RFR = The risk-free rate. 
In Equation (7.0la), the formula inside the braces ({ }) is known as 

the Sharpe ratio, a measurement of risk-adjusted returns. Expressed 
literally, the Sharpe ratio for a portfolio is a measure of the ratio of the 
expected excess returns to the standard deviation. The portfolio with the 
highest Sharpe ratio, therefore, is the portfolio where the CML line is 
tangent to the efficient frontier for a given RFR. 

The Sharpe ratio, when multiplied by the square root of the number 
of periods over which it was derived, equals the t statistic. From the 
resulting t statistic it is possible to obtain a confidence level that the 
AHPR exceeds the RFR by more than chance alone, assuming finite 
variance in the returns. 

The following table shows how to use Equation (7.0la) and demon-
strate the entire process discussed thus far. The first two columns repre-
sent the coordinates of different portfolios on the efficient frontier. The 
coordinates are given in (AHPR, SD) format, which corresponds to the 
Y and X axes of Figure 7-1. The third column is the answer obtained for 
Equation (7.01a) assuming a 1.5% risk-free rate (equating to an AHPR 
of 1.015. We assume that the HPRs here are quarterly HPRs, thus a 
1.5% risk-free rate for the quarter equates to roughly a 6% risk-free rate 
for the year). Thus, to work out (7.0la) for the third set of coordinates 
(60013. 1.002): 
(AHPR-(1+RFR))/SD = (1.002-(1+.015))/.00013 = (1.002-
1.015)/.00013 = -.013/.00013 = -100 

The process is completed for each point along the efficient frontier. 
Equation (7.01a) peaks out at .502265, which is at the coordinates 
(.02986, 1.03). These coordinates are the point where the CML line is 
tangent to the efficient frontier, corresponding to point B in Figure 7-1. 
This tangent point is a certain portfolio along the efficient frontier. The 
Sharpe ratio is the slope of the CML, with the steepest slope being the 
tangent line to the efficient frontier. 
Efficient Frontier CML line 
AHPR SD Eq.(7.01a) Percentage AHPR 
  RFR=.015   
1.00000 0.00000 0 0.00% 1.0150 
1.00100 0.00003 -421.902 0.11% 1.0150 
1.00200 0.00013 -100.000 0.44% 1.0151 
1.00300 0.00030 -40.1812 1.00% 1.0152 
1.00400 0.00053 -20.7184 1.78% 1.0153 
l.00500 0.00063 -12.0543 2.78% 1.0154 
1.00600 0.00119 -7.53397 4.00% 1.0156 
1.00700 0.00163 -4.92014 5.45% 1.0158 
l.00600 0.00212 -3.29611 7.11% 1.0161 
1.00900 0.00269 -2.23228 9.00% 1.0164 
1.01000 0.00332 -1.50679 11.11% 1.0167 
1.01100 0.00402 -0.99622 13.45% 1.0170 
1.01200 0.00476 -0.62783 16.00% 1.0174 
1.01300 0.00561 -0.35663 18.78% 1.0178 
1.01400 0.00650 -0.15375 21.78% 1.0183 
0.91500 0.00747 0 25.00% 1.0188 
1.01600 0.00649 0.117718 28.45% 1.0193 
1.01700 0.00959 0.208552 32.12% 1.0198 
1.01800 0.01075 0.279036 36.01% 1.0204 
1.01900 0.01198 0.333916 40.12% 1.0210 
1.02000 0.01327 0.376698 44.45% 1.0217 
                                                                 
1 See Tobin, James, "Liquidity preference as Behavior Towards Risk," Review of 
Economic Studies 25, pp. 65-85, February 1958. 
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Efficient Frontier CML line 
AHPR SD Eq.(7.01a) Percentage AHPR 
1.02100 0.01463 0.410012 49.01% 1.0224 
1.02200 0.01606 0.435850 53.79% 1.0231 
1.02300 0.01755 0.455741 58.79% 1.0236 
1.02400 0.01911 0.470073 64.01% 1.0246 
1.02500 0.02074 0.482174 69.46% 1.0254 
1.02600 0.02243 0.490377 75.12% 1.0263 
1.02700 0.02419 0.496064 81.01% 1.0272 
1.02800 0.02602 0.499702 87.12% 1.0281 
1.02900 0.02791 0.501667 93.46% 1.0290 
1.03000 0.02986 0.502265(

peak) 
100.02% 1.0300 

1.03100 0.03189 0.501742 106.79% 1.0310 
1.03200 0.03398 0.500303 113.80% 1.0321 
1.03300 0.03614 0.498114 121.02% 1.0332 
1.03400 0.03836 0.495313 128.46% 1.0343 
1.03500 0.04065 0.492014 136.13% 1.0354 
1.03600 0.04301 0.488313 144.02% 1.0366 
1.03700 0.04543 0.484287 152.13% 1.0376 
1.03800 0.04792 0.480004 160.47% 1.0391 
1.03900 0.05047 0.475517 169.03% 1.0404 
1.04000 0.05309 0.470873 177.81% 1.0417 
1.04100 0.05578 0.466111 186.81% 1.0430 
1.04200 0.05853 0.461264 196.03% 1.0444 
1.04300 0.06136 0.456357 205.48% 1.0456 
1.04400 0.06424 0.451416 215.14% 1.0473 
1.04500 0.06720 0.446458 225.04% 1.0466 
1.04600 0.07022 0.441499 235.15% 1.0503 
1.04700 0.07330 0.436554 245.48% 1.0516 
1.04800 0.07645 0.431634 256.04% 1.0534 
1.04900 0.07967 0.426747 266.82% 1.0550 
1.05000 0.08296 0.421902 277.82% 1.0567 

The next column over, "percentage, "represents what percentage of 
your assets must be invested in the tangent portfolio if you are at the 
CML line for that standard deviation coordinate. In other words, for the 
last entry in the table, to be on the CML line at the .08296 standard de-
viation level, corresponds to having 277.82% of your assets in the tan-
gent portfolio (i.e., being fully invested and borrowing another $1.7782 
for every dollar already invested to invest further). This percentage 
value is calculated from the standard deviation of the tangent portfolio 
as: 
(7.02) P = SX/ST 

where 
SX = The standard deviation coordinate for a particular point on the 

CML line. 
ST = The standard deviation coordinate of the tangent portfolio. 
P = The percentage of your assets that must be invested in the tan-

gent portfolio to be on the CML line for a given SX. 
Thus, the CML line at the standard deviation coordinate .08296, the 

last entry in the table, is divided by the standard deviation coordinate of 
the tangent portfolio, .02986, yielding 2.7782, or 277.82%. 

The last column in the table, the CML line AHPR, is the AHPR of 
the CML line at the given standard deviation coordinate. This is figured 
as: 
(7.03) ACML = (AT*P)+((1+RFR)*(1-P)) 

where 
ACML = The AHPR of the CML line at a given risk coordinate, or 

a corresponding percentage figured from (7.02). 
AT = The AHPR at the tangent point, figured from (7.01a). 
P = The percentage in the tangent portfolio, figured from (7.02) 
RFR = The risk-free rate. 
On occasion you may want to know the standard deviation of a cer-

tain point on the CML line for a given AHPR. This linear relationship 
can be obtained as: 
(7.04) SD = P*ST 

where 
SD = The standard deviation at a given point on the CML line cor-

responding to a certain percentage, P, corresponding to a certain AHPR. 
P = The percentage in the tangent portfolio, figured from 

 (7.02). 
ST = The standard deviation coordinate of the tangent portfolio. 

THE GEOMETRIC EFFICIENT FRONTIER 
The problem with Figure 7-1 is that it shows the arithmetic average 

HPR. When we are reinvesting profits back into the program we must 
look at the geometric average HPR for the vertical axis of the efficient 
frontier. This changes things considerably. The formula to convert a 
point on the efficient frontier from an arithmetic HPR to a geometric is: 
(7.05) GHPR = (AHPR^2-V)^(1/2) 

where 
GHPR = The geometric average HPR. 
AHPR = The arithmetic average HPR. 
V = The variance coordinate. (This is equal to the standard devia-

tion coordinate squared.) 

GHPR
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Figure 7-2 The efficient frontier with/without reinvestment 

In Figure 7-2 you can see the efficient frontier corresponding to the 
arithmetic average HPRs as well as that corresponding to the geometric 
average HPRs. You can see what happens to the efficient frontier when 
reinvestment is involved. 

By graphing your GHPR line, you can see which portfolio is the 
geometric optimal (the highest point on the GHPR line). You could also 
determine this portfolio by converting the AHPRs and Vs of each port-
folio along the AHPR efficient frontier into GHPRs per Equation (7.05) 
and see which had the highest GHPR. Again, that would be the geomet-
ric optimal. However, given the AHPRs and the Vs of the portfolios 
lying along the AHPR efficient frontier, we can readily discern which 
portfolio would be geometric optimal- the one that solves the following 
equality: 
(7.06a) AHPR-1-V = 0 

where 
AHPR = The arithmetic average HPRs. This is the E coordinate of a 

given portfolio on the efficient frontier. 
V = The variance in HPR. This is the V coordinate of a given port-

folio on the efficient frontier. This is equal to the standard deviation 
squared. 

Equation (7.06a) can also be written as any one of the following 
three forms: 
(7.06b) AHPR-1 = V 
(7.06c) AHPR-V = 1 
(7.06d) AHPR = V+1 

A brief note on the geometric optimal portfolio is in order here. 
Variance in a portfolio is generally directly and positively correlated to 
drawdown in that higher variance is generally indicative of a portfolio 
with higher draw-down. Since the geometric optimal portfolio is that 
portfolio for which E and V are equal (with E = AHPR-1), then we can 
assume that the geometric optimal portfolio will see high drawdowns. In 
fact, the greater the GHPR of the geometric optimal portfolio-that is, the 
more the portfolio makes-the greater will be its drawdown in terms of 
equity retracements, since the GHPR is directly positively correlated 
with the AHPR. Here again is a paradox. We want to be at the geometric 
optimal portfolio. Yet, the higher the geometric mean of a portfolio, the 
greater will be the drawdowns in terms of percentage equity retrace-
ments generally. Hence, when we perform the exercise of diversifica-
tion, we should view it as an exercise to obtain the highest geometric 
mean rather than the lowest drawdown, as the two tend to pull in oppo-



- 83 - 

site directions! The geometrical optimal portfolio is one where a line 
drawn from (0,0), with slope 1, intersects the AHPR efficient frontier. 

Figure 7-2 demonstrates the efficient frontiers on a one-trade basis. 
That is, its rows what you can expect on a one-trade basis. We can con-
vert the geometric average HPR to a TWR by the equation: 
(7.07) GTWR = GHPR^N 

where 
GTWR = The vertical axis corresponding to a given GHPR after N 

trades. 
GHPR = The geometric average HPR. 
N = The number of trades we desire to observe. 
Thus, after 50 trades a GHPR of 1.0154 would be a GTWR of 

1.0154 A 50 = 2.15. In other words, after 50 trades we would expect our 
stake to have grown by a multiple of 2.15. 

We can likewise project the efficient frontier of the arithmetic aver-
age HPRs into ATWRs as: 
(7.08) ATWR = 1+N*(AHPR-1) 

where 
ATWR = The vertical axis corresponding to a given AHPR after N 

trades. 
AHPR = The arithmetic average HPR. 
N = The number of trades we desire to observe. 
Thus, after 50 trades, an arithmetic average HPR of 1.03 would 

have made 1+50*(1.03-1) = 1+50*.03 = 1+1.5 = 2.5 times our starting 
stake. Note that this shows what happens when we do not reinvest our 
winnings back into the trading program. Equation (7.08) is the TWR 
you can expect when constant-contract trading. 
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Figure 7-3 The efficient frontier with/without reinvestment 

Just as Figure 7-2 shows the TWRs, both arithmetic and geometric, 
for one trade, Figure 7-3 shows them for a few trades later. Notice that 
the GTWR line is approaching the ATWR line. At some point for N, the 
geometric TWR will overtake the arithmetic TWR. Figure 7-4 shows the 
arithmetic and geometric TWRs after more trades have elapsed. Notice 
that the geometric has overtaken the arithmetic. If we were to continue 
with more and more trades, the geometric TWR would continue to out-
pace the arithmetic. Eventually, the geometric TWR becomes infinitely 
greater than the arithmetic. 
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Figure 7-4 The efficient frontier with/without reinvestment. 

The logical question is, “How many trades must elapse until the 
geometric TWR surpasses the arithmetic?” Recall Equation (2.09a), 
which tells us the number of trades required to reach a specific goal: 
(2.09a) N = ln(Goal)/ln(Geometric Mean) 

where 
N = The expected number of trades to reach a specific goal. 
Goal = The goal in terms of a multiple on our starting stake, a TWR. 
ln() = The natural logarithm function. 
We let the AHPR at the same V as our geometric optimal portfolio 

be our goal and use the geometric mean of our geometric optimal port-
folio in the denominator of (2.09a). We can now discern how many 
trades are required to make our geometric optimal portfolio match one 
trade in the corresponding arithmetic portfolio. Thus: 
N = ln(l.031)/ln( 1.01542) = .035294/.0153023 = 1.995075 

We would thus expect 1.995075, or roughly 2, trades for the optimal 
GHPR to be as high up as the corresponding (same V) AHPR after one 
trade. 

The problem is that the ATWR needs to reflect the fact that two 
trades have elapsed. In other words, as the GTWR approaches the 
ATWR, the ATWR is also moving upward, albeit at a constant rate 
(compared to the GTWR, which is accelerating). We can relate this 
problem to Equations (7.07) and (7.08), the geometric and arithmetic 
TWRs respectively, and express it mathematically: 
(7.09) GHPR^N => 1+N*(AHPR-1) 

Since we know that when N = 1, G will be less than A, we can re-
phrase the question to "At how many N will G equal A?" Mathemati-
cally this is: 
(7.10a) GHPR^N = 1+N*(AHPR-1) 

which can be written as: 
(7.10b) 1+N*(AHPR-1)-GHPR ^N = 0 

or 
(7.10c) 1+N*AHPR-N-GHPR^N = 0 

or 
(7.10d) N = (GHPR^N-1)/(AHPR -1) 

The N that solves (7.10a) through (7.10d) is the N that is required 
for the geometric HPR to equal the arithmetic. All three equations are 
equivalent. The solution must be arrived at by iteration. Taking our 
geometric optimal portfolio of a GHPR of 1.01542 and a corresponding 
AHPR of 1.031, if we were to solve for any of Equations (7.10a) 
through (7.10d), we would find the solution to these equations at N = 
83.49894. That is, at 83.49894 elapsed trades, the geometric TWR will 
overtake the arithmetic TWR for those TWRs corresponding to a vari-
ance coordinate of the geometric optimal portfolio. 
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Figure 7-5 AHPR, GHPR, and their CML lines. 

Just as the AHPR has a CML line, so too does the GHPR. Figure 7-
5 shows both the AHPR and the GHPR with a CML line for both calcu-
lated from the same risk-free rate. 

The CML for the GHPR is calculated from the CML for the AHPR 
by the following equation: 
(7.11) CMLG = (CMLA^2-VT*P)^(1/2) 

where 



- 84 - 

CMLG = The E coordinate (vertical) to the CML line to the GHPR 
for a given V coordinate corresponding to P. 

CMLA = The E coordinate (vertical) to the CML line to the AHPR 
for a given V coordinate corresponding to P. 

P = The percentage in the tangent portfolio, figured from (7.02). 
VT = The variance coordinate of the tangent portfolio. 
You should know that, for any given risk-free rate, the tangent port-

folio and the geometric optimal portfolio are not necessarily (and usu-
ally are not) the same. The only time that these portfolios will be the 
same is when the following equation is satisfied: 
(7.12) RFR = GHPROPT-1 

where 
RFR = The risk-free rate. 
GHPROPT = The geometric average HPR of the geometric optimal 

portfolio. This is the E coordinate of the portfolio on the efficient fron-
tier. 

Only when the GHPR of the geometric optimal portfolio minus 1 is 
equal to the risk-free rate will the geometric optimal portfolio and the 
portfolio tangent to the CML line be the same. If RFR > GHPROPT-1, 
then the geometric optimal portfolio will be to the left of (have less vari-
ance than) the tangent portfolio. If RFR < GHPROPT-1, then the tan-
gent portfolio will be to the left of (have less variance than) the geomet-
ric optimal portfolio. In all cases, though, the tangent portfolio will, of 
course, never have a higher GHPR than the geometric optimal portfolio. 

Note also that the point of tangency for the CML to the GHPR and 
for the CML to the AHPR is at the same SD coordinate. We could use 
Equation (7.01a) to find the tangent portfolio of the GHPR line by sub-
stituting the AHPR in (7.01a) with GHPR. The resultant equation is: 
(7.01b) Tangent Portfolio = MAX{(GHPR-(1+RFR))/SD} 

where 
MAX() = The maximum value. 
GHPR = The geometric average HPRs. This is the E coordinate of a 

given portfolio on the efficient frontier. 
SD = The standard deviation in HPRs. This is the SD coordinate of 

a given portfolio on the efficient frontier. 
RFR = The risk-free rate. 

UNCONSTRAINED PORTFOLIOS 
Now we will see how to enhance returns beyond the GCML line by 

lifting the sum of the weights constraint. Let us return to geometric op-
timal portfolios. If we look for the geometric optimal portfolio among 
our four market systems-Toxico, Incubeast, LA Garb and a savings 
account-we find it at E equal to .1688965 and V equal to .1688965, thus 
conforming with Equations (7.06a) through (7.06d). The geometric 
mean of such a portfolio would therefore be 1.094268, and the portfo-
lio's composition would be: 

Toxico 18.89891% 
Incubeast 19.50386% 
LA Garb 58.58387% 
Savings Account .03014% 
In using Equations (7.06a) through (7.06d), you must iterate to the 

solution. That is, you try a test value for E (halfway between the highest 
and the lowest AHPRs, -1 is a good starting point) and solve the matrix 
for that E. If your variance is higher than E, it means the tested for value 
of E was too high, and you should lower it for the next attempt. Con-
versely, if your variance is less than E, you should raise E for the next 
pass. You determine the variance for the portfolio by using one of Equa-
tions (6.06a) through (6.06d). You keep on repeating the process until 
whichever of Equations (7.06a) through (7.06d) you choose to use, is 
solved. Then you will have arrived at your geometric optimal portfolio. 
(Note that all of the portfolios discussed thus far, whether on the AHPR 
efficient frontier or the GHPR efficient frontier, are determined by con-
straining the sum of the percentages, the weights, to 100% or 1.00.) 

Recall Equation (6.10), the equation used in the starting augmented 
matrix to find the optimal weights in a portfolio. This equation dictates 
that the sum of the weights equal 1: 
(6.10) (∑[i = 1,N]Xi) -1 = 0 

where 

N = The number of securities comprising the portfolio. 
Xi = The percentage weighting of the ith security. 
The equation can also be written as: 

(∑[i = 1,N]Xi) = l 
By allowing the left side of this equation to be greater than 1, we 

can find the unconstrained optimal portfolio. The easiest way to do this 
is to add another market system, called non-interest-bearing cash (NIC), 
into the Starting augmented matrix. This market system, NIC, will have 
an arithmetic average daily HPR of 1.0 and a population standard devia-
tion (as well as variance and covariances) in those daily HPRs of 0. 
What this means is that each day the HPR for NIC will be 1.0. The cor-
relation coefficients for NIC to any other market system are always 0. 

Now we set the sum of the weights constraint to some arbitrarily 
high number, greater than I. A good initial value is 3 times the number 
of market systems (without NIC) that you are using. Since we have 4 
market systems (when not counting NIC) we should set this sum of the 
weights constraint to 4*3 = 12. Note that we are not really lifting the 
constraint that the sum of the weights be below some number, we are 
just setting this constraint at an arbitrarily high value. The difference 
between this arbitrarily high value and what the sum of the weights 
actually comes out to be will be the weight assigned to NIC. 

We are not going to really invest in NIC, though. It's just a null en-
try that we are pumping through the matrix to arrive at the uncon-
strained weights of our market systems. Now, let's take the parameters 
of our four market systems from Chapter 6 and add NIC as well: 
Investment Expected Return 

as an HPR 
Expected Standard 
Deviation of Return

Toxico 1.095  .316227766  
Incubeast Corp. 1.13  .5  
LA Garb 1.21  .632455532  
Savings Account 1.085  0  
NIC 1.00  0  

The covariances among the market systems, with NIC included, are 
as follows: 
 T I L S N 
T .1 -.0237 .01 0 0 
I -.0237 .25 .079 0 0 
L .01 .079 .4 0 0 
S 0 0 0 0 0 
N 0 0 0 0 0 

Thus, when we include NIC, we are now dealing with 5 market sys-
tems; therefore, the generalized form of the starting augmented matrix 
is: 
X1*U1+ X2*U2+ X3*U3+ X4*U4+ X5*U5 = E 
X1+ X2+ X3+ X4+ X5 = S 
X1*COV1,1+X2*COV1,2+X3*COV1,3+X4*COV1,4+X5*COV1,5+.5*L1*U1
+.5*L2 = 0 
X1*COV2,1+X2*COV2,2+X3*COV2,3+X4*COV2,4+X5*COV2,5+.5*L1*U2
+.5*L2 = 0 
X1*COV3,1+X2*COV3,2+X3*COV3,3+X4*COV3,4+X5*COV3,5+.5*L1*U3
+.5*L2 = 0 
X1*COV4,1+X2*COV4,2+X3*COV4,3+X4*COV4,4+X5*COV4,5+.5*L1*U4
+.5*L2 = 0 
X1*COV5,1+X2*COV5,2+X3*COV5,3+X4*COV5,4+X5*COV5,5+.5*L1*U5
+.5*L2 = 0 

where 
E = The expected return of the portfolio. 
S = The sum of the weights constraint. 
COVA,B = The covariance between securities A and B. 
Xi = The percentage weighting of the ith security. 
Ui = The expected return of the ith security. 
L1 = The first Lagrangian multiplier. 
L2 = The second Lagrangian multiplier. 
Thus, once we have included NIC, our starting augmented matrix 

appears as follows: 
X1 X2 X3 X4 X5 L1 L2 Answer 
.095 .13 .21 .085 0   E 
1 1 1 1 0   12 
.1 -.0237 .01 0 0 .095 1 0 
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-.0237 .25 .079 0 0 .13 1 0 
.01 .079 .4 0 0 .21 1 0 
0 0 0 0 0 .085 1 0 
0 0 0 0 0 0 1 0 

Note that the answer column of the second row, the sum of the 
weights constraint, is 12, as we determined it to be by multiplying the 
number of market systems (not including NIC) by 3. 

When you are using NIC, it is important that you include it as the 
last, the Nth market system of N market systems, in the starting aug-
mented matrix. 

Now, the object is to obtain the identity matrix by using row opera-
tions to produce elementary transformations, as was detailed in Chapter 
6. You can now create an unconstrained AHPR efficient frontier and an 
unconstrained GHPR efficient frontier. The unconstrained AHPR effi-
cient frontier represents using leverage but not reinvesting. 

The GHPR efficient frontier represents using leverage and reinvest-
ing the profits. Ideally, we want to find the unconstrained geometric 
optimal portfolio. This is the portfolio that will result in the greatest 
geometric growth for us. We can use Equations (7.06a) through (7.06d) 
to solve for which of the portfolios along the efficient frontier is geo-
metric optimal. In so doing, we find that no matter what value we try to 
solve E for (the value in the answer column of the first row), we get the 
same portfolio-comprised of only the savings account levered up to give 
us whatever value for E we want. This results in giving us our answer; 
we get the lowest V (in this case zero) for any given E. 

What we must do, then, is take the savings account out of the matrix 
and start over. This time we will try to solve for only four market sys-
tems -Toxico, Incubeast, LA Garb, and NIC-and we set our sum of the 
weights constraint to 9. Whenever you have a component in the matrix 
with zero variance and an AHPR greater than 1, you'll end up with the 
optimal portfolio as that component levered up to meet the required E. 

Now, solving the matrix, we find Equations (7.06a) through (7.06d) 
satisfied at E equals .2457. Since this is the geometric optimal portfolio, 
V is also equal to .2457. The resultant geometric mean is 1.142833. The 
portfolio is: 

Toxico 102.5982% 
Incubeast 49.00558% 
LA Garb 40.24979% 
NIC 708.14643% 
“Wait,” you say. "How can you invest over 100% in certain compo-

nents?” We will return to this in a moment. 
If NIC is not one of the components in the geometric optimal port-

folio, then you must make your sum of the weights constraint, S, higher. 
You must keep on making it higher until NIC becomes one of the com-
ponents of the geometric optimal portfolio. Recall that if there are only 
two components in a portfolio, if the correlation coefficient between 
them is -1, and if both have positive mathematical expectation, you will 
be required to finance an infinite number of contracts. This is so because 
such a portfolio would never have a losing day. Now, the lower the cor-
relation coefficients are between the components in the portfolio, the 
higher the percentage required to be invested in those components is 
going to be. The difference between the percentages invested and the 
sum of the weights constraint, S, must be filled by NIC. If NIC doesn't 
show up in the percentage allocations for the geometric optimal portfo-
lio, it means that the portfolio is running into a constraint at S and is 
therefore not the unconstrained geometric optimal. Since you are not 
going to be actually investing in NIC, it doesn't matter how high a per-
centage it commands, as long as it is listed as part of the geometric op-
timal portfolio. 

HOW OPTIMAL F FITS WITH OPTIMAL PORTFOLIOS 
In Chapter 6 we saw that we must determine an expected return (as 

a percentage) and an expected variance in returns for each component in 
a portfolio. Generally, the expected returns (and the variances) are de-
termined from the current price of the stock. An optimal percentage 
(weighting) is then determined for each component. The equity of the 
account is then multiplied by a components weighting to determine the 
number of dollars to allocate to that component, and this dollar alloca-
tion is then divided by the current price per share to determine how 
many shares to have on. That generally is how portfolio strategies are 
currently practiced. But it is not optimal. Here lies one of this book's 

many hearts. Rather than determining the expected return and variance 
in expected return from the current price of the component, the expected 
return and variance in returns should be determined from the optimal f, 
in dollars, for the component. In other words, as input you should use 
the arithmetic average HPR and the variance in the HPRs. Here, the 
HPRs used should be not of trades, but of a fixed time length such as 
days, weeks, months, quarters, or years-as we did in Chapter 1 with 
Equation (1.15). 
(1.15) Daily HPR = (A/B)+1 

where 
A = Dollars made or lost that day. 
B = Optimal fin dollars. 
We need not necessarily use days. We can use any time length we 

like so long as it is the same time length for all components in the port-
folio (and the same time length is used for determining the correlation 
coefficients between these HPRs of the different components). Say the 
market system with an optimal f of $2,000 made $100 on a given day. 
Then the HPR for that market system for that day is 1.05. 

If you are figuring your optimal f based on equalized data, you must 
use Equation (2.12) in order to obtain your daily HPRs: 
(2.12) Daily HPR = D$/f$+1 

where 
D$ = The dollar gain or loss on 1 unit from the previous day. This is 

equal to (Tonight's Close-Last Night's Close)*Dollars per Point 
f$ = The current optimal fin dollars, calculated from 
Equation (2.11). Here, however, the current price variable is last 

night's close. 
In other words, once you have determined the optimal fin dollars for 

1 unit of a component, you then take the daily equity changes on a 1-
unit basis and convert them to HPRs per Equation (1.15)-or, if you are 
using equalized data, you can use Equation (2.12). When you are com-
bining market systems in a portfolio, all the market systems should be 
the same in terms of whether their data, and hence their optimal fs and 
by-products, has been equalized or not. 

Then we take the arithmetic average of the HPRs. Subtracting 1 
from the arithmetic average will give us the expected return to use for 
that component. Taking the variance of the daily (weekly, monthly, etc.) 
HPRs will give the variance input into the matrix. Lastly, we determine 
the correlation coefficients between the daily HPRs for each pair of 
market systems under consideration. 

Now here is the critical point. Portfolios whose parameters (ex-
pected returns, variance in expected ret urns, and correlation coeffi-
cients of the expected returns) are selected based on the current price 
of the component will not yield truly optimal portfolios. To discern the 
truly optimal portfolio you must derive the input parameters based on 
trading 1 unit at the optimal f for each component. You cannot be 
more at the peak of the optimal f curve than optimal f itself: to base 
the parameters on the current market price of the component is to 
base your parameters arbitrarily-and, as a consequence, not necessar-
ily optimally. 

Now let's return to the question of how you can invest more than 
100% in a certain component. One of the basic premises of this book is 
that weight and quantity are not the same thing. The weighting that you 
derive from solving for a geometric optimal portfolio must be reflected 
back into the optimal f's of the portfolio's components. The way to do 
this is to divide the optimal f's for each component by its corresponding 
weight. Assume we have the following optimal f's (in dollars): 

Toxico $2,500 
Incubeast $4,750 
LA Garb $5,000 
(Note that, if you are equalizing your data, and hence obtaining an 

equalized optimal f and by-products, then your optimal fs in dollars will 
change each day based upon the previous day's closing price and Equa-
tion[2.11].) 

We now divide these f's by their respective weightings: 
Toxico $2,500/1.025982 = $2,436.69 
Incubeast $4,750/.4900558 = $9,692.77 
LA Garb $5,000/.4024979 = $12,422.43 
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Thus, by trading in these new "adjusted" f values, we Witt be at 
the geometric optimal portfolio. In other words, suppose Toxico repre-
sents a certain market system. By trading 1 contract under this market 
system for every $2,436.69 in equity (and doing the same with the other 
market systems at their new adjusted f values) we will be at the geomet-
ric optimal unconstrained portfolio. Likewise if Toxico is a stock, and 
we regard 100 shares as "1 contract," we will trade 100 shares of Toxico 
for every l$2,436.69 in account equity. For the moment, disregard mar-
gin completely. Later in the next chapter we will address the potential 
problem of margin requirements. 

"Wait a minute," you protest. "If you take an optimal portfolio and 
change it by using optimal f, you have to prove that it is still optimal. 
But if you treat the new values as a different portfolio, it must fall 
somewhere else on the return coordinate, not necessarily on the efficient 
frontier. In other words, if you keep reevaluating f, you cannot stay op-
timal, can you?" 

We are not changing the f values. That is, our f values (the number 
of units put on for so many dollars in equity) are still the same. We are 
simply performing a shortcut through the calculations, which makes it 
appear as though we are "adjusting" our f values. We derive our optimal 
portfolios based on the expected returns and variance in returns of trad-
ing 1 unit of each of the components, as well as on the correlation coef-
ficients. We thus derive optimal weights (optimal percentages of the 
account to trade each component with). Thus, if a market system had an 
optimal f of $2,000, and in optimal portfolio weight of .5, we would 
trade 50% of our account at the full optimal f level of $2,000 for this 
market system. This is exactly the same is if we said we will trade 100% 
of our account at the optimal f divided by the optimal weighting 
($2,000/.5) of $4000. In other words, we are going to trade the optimal f 
of $2,000 per unit on 50% of our equity, which in turn is exactly the 
same as saying we are going to trade the adjusted f of $4,000 on 100% 
of our equity. 

The AHPRs and SDs that you input into the matrix are determined 
from the optimal f values in dollars. If you are doing this on stocks, you 
can compute your values for AHPR, SD, and optimal f on a I-share or a 
100-share basis (or any other basis you like). You dictate the size of one 
unit. 

In a nonleveraged situation, such as a portfolio of stocks that are not 
on margin, weighting and quantity are synonymous. Yet in a leveraged 
situation, such as a portfolio of futures market systems, weighting and 
quantity arc different indeed. you can now see the idea first roughly 
introduced in Portfolio Management Formulas: that optimal quantities 
are what we seek to know, and that this is a function of optimal weight-
ings. 

When we figure the correlation coefficients on the HPRs of two 
market systems, both with a positive arithmetic mathematical expecta-
tion, we find a slight tendency toward positive correlation. This is be-
cause the equity curves (the cumulative running sum of daily equity 
changes) both tend to rise up and to the right. This can be bothersome to 
some people. One solution is to determine a least squares regression line 
to each equity curve (before equalization, if employed) and then take the 
difference at each point in time on the equity curve and its regression 
line. Next, convert this now detrended equity curve back to simple daily 
equity changes (noncumulative, i.e., the daily change in the detrended 
equity curve). If you are equalizing the data, you would then do it at this 
point in the sequence of events. Lastly, you figure your correlations on 
this processed data. 

This technique is valid so long as you are using the correlations of 
daily equity changes and not prices. If you use prices, you may do your-
self more harm than good. Very often prices and daily equity changes 
are linked, as example would be a long-term moving average crossover 
system. 

This detrending technique must always be used with caution. Also, 
the daily AHPR and standard deviation in HPRs must always be figured 
off of non-detrended data. 

A final problem that happens when you detrend your data occurs 
with systems that trade infrequently. Imagine two day-trading systems 
that give one trade per week, both on different days. The correlation 
coefficient between them may be only slightly positive. Yet when we 
detrend their data, we get very high positive correlation. This mistakenly 
happens because their regression lines are rising a little each day. Yet on 
most days the equity change is zero. Therefore, the difference is nega-

tive. The preponderance , slightly negative days with both market sys-
tems, then mistakenly results in high positive correlation. 

THRESHOLD TO THE GEOMETRIC FOR PORTFOLIOS 
Now let's address the problem of incorporating the threshold to the 

geometric with the given optimal portfolio mix. This problem is readily 
handled simply by dividing the threshold to the geometric for each com-
ponent by its weighting in the optimal portfolio. This is done in exactly 
the same way as the optimal fs of the components are divided by their 
respective weightings to obtain a new value representative of the opti-
mal portfolio mix. For example, assume that the threshold to the geo-
metric for Toxico is $5,100. Dividing this by its weighting in the opti-
mal portfolio mix of 1.025982 gives us a new adjusted threshold to the 
geometric of: 
Threshold = $5,100/1.025982 = $4,970.85 

Since the weighting for Toxico is greater than 1, both its optimal f 
and its threshold to the geometric will be reduced, for they are divided 
by this weighting. In this case, if we cannot trade the fractional unit with 
Toxico, and if we are trading only 1 unit of Toxico, we will switch up to 
2 units only when our equity gets up to $4,970.85. 

Recall that our new adjusted f value in the optimal portfolio mix for 
Toxico is $2,436.69 ($2,500/1.025982). Since twice this amount equals 
$4,873.38, we would ordinarily move up to trading two contracts at that 
point. However, our threshold to the geometric, being greater than twice 
the f allocation in dollars, tells us there isn't any benefit to switching to 
trading 2 units before our equity reaches the threshold to the geometric 
of $4970.85. 

Again, if you are equalizing your data, and hence obtaining an 
equalized optimal f and by-products, including the threshold to the geo-
metric, then your optimal fs in dollars and your thresholds to the geo-
metric will change each day, based upon the previous day's closing price 
and Equation (2.11). 

COMPLETING THE LOOP 
One thing you will readily notice about unconstrained portfolios 

(portfolios for which the sum of the weights is greater than 1 and NIC 
shows up as a market system in the portfolio) is that the portfolio is 
exactly the same for any given level of E-the only difference being the 
degree of leverage. This is not true for portfolios lying along the effi-
cient frontier(s) when the sum of the weights is constrained). In other 
words, the ratios of the weightings of the different market systems to 
each other are always the same for any point along the unconstrained 
efficient frontiers (AHPR or GHPR). 

For example, the ratios of the different weightings between the dif-
ferent market systems in the geometric optimal portfolio can be calcu-
lated. The ratio of Toxico to Incubeast is 102.5982% divided by 
49.00558%, which equals 2.0936. We can thus determine the ratios of 
all the components in this portfolio to one another: 

Toxico/Incubeast = 2.0936 
Toxico/LA Garb = 2.5490 
Incubeast/LA Garb = 1.2175 
Now, we can go back to the unconstrained portfolio and solve for 

different values for E. What follows are the weightings for the compo-
nents of the unconstrained portfolios that have the lowest variances for 
the given values of E. You will notice that the ratios of the weightings of 
the components are exactly the same: 
 E = .1  E = .3  
Toxico  .4175733 1.252726  
Incubeast .1 994545 .5983566  
LA Garb  .1638171 .49145  

Thus, we can state that the unconstrained efficient frontiers are the 
same portfolio at different levels of leverage. This portfolio, the one 
that gets levered up and down with E when the sum of the weights con-
straint is lifted, is the portfolio that has a value of zero for the second 
Lagrangian multiplier when the sum of the weights equals 1. 

Therefore, we can readily determine what our unconstrained geo-
metric optimal portfolio will be. First, we find the portfolio that has a 
value of zero for the second Lagrangian multiplier when the sum of the 
weights is constrained to 1.00. One way to find this is through iteration. 
The resultant portfolio will be that portfolio which gets levered up (or 
down) to satisfy any given E in the unconstrained portfolio. That value 
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for E which satisfies any of Equations (7.06a) through (7.06d) will be 
the value for E that yields the unconstrained geometric optimal portfo-
lio. 

Another equation that we can use to solve for which portfolio along 
the unconstrained AHPR efficient frontier is geometric optimal is to use 
the first Lagrangian multiplier that results in determining a portfolio 
along any particular point on the unconstrained AHPR efficient frontier. 
Recall from Chapter 6 that one of the by-products in determining the 
composition of a portfolio by the method of row-equivalent matrices is 
the first Lagrangian multiplier. The first Lagrangian multiplier repre-
sents the instantaneous rate of change in variance with respect to ex-
pected return, sign reversed. A first Lagrangian multiplier equal to -2 
means that at that point the variance was changing at that rate (-2) oppo-
site the expected return, sign reversed. This would result in a portfolio 
that was geometric optimal. 
(7.06e) L1 = -2 

where 
L1 = The first Lagrangian multiplier of a given portfolio along the 

unconstrained AHPR efficient frontier.2 
Now it gets interesting as we tie these concepts together. The port-

folio that gets levered up and down the unconstrained efficient frontiers 
(arithmetic or geometric) is the portfolio tangent to the CML line ema-
nating from an RFR of 0 when the sum of the weights is constrained to 
1.00 and NIC is not employed. 

Therefore, we can also find the unconstrained geometric optimal 
portfolio by first finding the tangent portfolio to an RFR equal to 0 
where the sum of the weights is constrained to 1.00, then levering this 
portfolio up to the point where it is the geometric optimal. But how can 
we determine how much to lever this constrained portfolio up to make it 
the equivalent of the unconstrained geometric optimal portfolio? 

Recall that the tangent portfolio is found by taking the portfolio 
along the constrained efficient frontier (arithmetic or geometric) that has 
the highest Sharpe ratio, which is Equation (7.01). Now we lever this 
portfolio up, and we multiply the weights of each of its components by a 
variable named q, which can be approximated by: 
(7.13) q = (E-RFR)/V 

where 
E = The expected return (arithmetic) of the tangent portfolio. 
RFR = The risk-free rate at which we assume you can borrow or 

loan. 
V = The variance in the tangent portfolio. 
Equation (7.13) actually is a very close approximation for the actual 

optimal q. 
An example may help illustrate the role of optimal q. Recall that our 

unconstrained geometric optimal portfolio is as follows: 
Component  Weight  
Toxico  1.025955  
Incubeast  .4900436  
LA Garb  .4024874  

This portfolio, we found, has an AHPR of 1.245694 and variance of 
.2456941. Throughout the remainder of this discussion we will assume 
for simplicity's sake an RFR of 0. (Incidentally, the Sharpe ratio of this 
portfolio, (AHPR-(1+RFR))/SD, is .49568.) 

Now, if we were to input the same returns, variances, and correla-
tion coefficients of these components into the matrix and solve for 
which portfolio was tangent to an RFR of 0 when the sum of the weights 
is constrained to 1.00 and we do not include NIC, we would obtain the 
following portfolio: 
Component  Weight  
Toxico  .5344908  
Incubeast  .2552975  
LA Garb  .2102117  

This particular portfolio has an AHPR of 1.128, a variance of 
.066683, and a Sharpe ratio of .49568. It is interesting to note that the 
Sharpe ratio of the tangent portfolio, a portfolio for which the sum of 
                                                                 
2 Thus, we can state that the geometric optimal portfolio is that portfolio which, 
when the sum of the weights is Constrained to 1, has a second Lagrangian multi-
plier equal to 0, and when unconstrained has a first Lagrangian multiplier of -2. 
Such a portfolio will also have a second Lagrangian multiplier equal to 0 when 
unconstrained. 

the weights is con strained to 1.00 and we do not include NIC, is ex-
actly the same as the Sharpe ratio for our unconstrained geometric 
optimal portfolio. 

Subtracting 1 from our AHPRs gives us the arithmetic average re-
turn of the portfolio. Doing so we notice that in order to obtain the same 
return for the constrained tangent portfolio as for the unconstrained 
geometric optimal portfolio, we must multiply the former by 1.9195. 
.245694/.128 = 1.9195 

Now if we multiply each of the weights of the constrained tangent 
portfolio, the portfolio we obtain is virtually identical to the uncon-
strained geometric optimal portfolio: 
Component Weight  * 1.9195 = Weight  
Toxico  .5344908 1.025955  
Incubeast  .2552975 .4900436  
LA Garb  .2102117 .4035013  

The factor 1.9195 was arrived at by dividing the return on the un-
constrained geometric optimal portfolio by the return on the constrained 
tangent portfolio. Usually, though, we will want to find the uncon-
strained geometric optimal portfolio knowing only the constrained tan-
gent portfolio. This is where optimal q comes in.3 If we assume an RFR 
of 0, we can determine the optimal q on our constrained tangent portfo-
lio as: 
(7.13) q = (E-RFR)/V = (. 128-0)7.066683 = 1.919529715 

A few notes on the RFR. To begin with, we should always assume 
an RFR of 0 when we are dealing with futures contracts. Since we are 
not actually borrowing or lending funds to lever our portfolio up or 
down, there is effectively an RFR of 0. With stocks, however, it is a 
different story. The RFR you use should be determined with this fact in 
mind. Quite possibly, the leverage you employ does not require you to 
use an RFR other than 0. 

You will often be using AHPRs and variances for portfolios that 
were determined by using daily HPRs of the components. In such cases, 
you must adjust the RFR from an annual rate to a daily one. This is quite 
easy to accomplish. First, you must be certain that this annual rate is 
what is called the effective mutual interest rate. Interest rates are typi-
cally stated as annual percentages, but frequently these annual percent-
ages are what is referred to as the nominal annual interest rate. When 
interest is compounded semiannually, quarterly, monthly, and so on, the 
interest earned during a year is greater than if compounded annually (the 
nominal rate is based on compounding annually). When interest is com-
pounded more frequently than annually, an effective annual interest rate 
can be determined from the nominal interest rate. It is the effective an-
nual interest rate that concerns us and that we will use in our calcula-
tions. To convert the nominal rate to an effective rate we can use: 
(7.14) E = (1+R/M)^M-1 

where 
E = The effective annual interest rate. 
R = The nominal annual interest rate. 
M = The number of compounding periods per year. 
Assume that the nominal annual interest rate is 9%, and suppose 

that it is compounded monthly. Therefore, the corresponding effective 
annual interest rate is: 
(7.14) E = (1+.09/12)^12-1 = (1+.0075)^12-1 = 1.0075^12-1 = 
1.093806898-1 = .093806898 

Therefore, our effective annual interest rate is a little over 9.38%. 
Now if we figured our HPRs on the basis of weekdays, we can state that 
there are 365.2425/7*5 = 260.8875 weekdays, on average, in a year. 
Dividing .093806898 by 260.8875 gives us a daily RFR of 
.0003595683887. 

If we determine that we are actually paying interest to lever our 
portfolio up, and we want to determine from the constrained tangent 
portfolio what the unconstrained geometric optimal portfolio is, we 
simply input the value for the RFR into the Sharpe ratio, Equation 
(7.01), and the optimal q, Equation (7.13). 

Now to close the loop. Suppose you determine that the RFR for 
your portfolio is not 0, and you want to find the geometric optimal port-
folio without first having to find the constrained portfolio tangent to 
your applicable RFR. Can you just go straight to the matrix, set the sum 
                                                                 
3 Latane, Henry, and Donald Tuttle, "Criteria for Portfolio Building," journal of 
Finance 22, September 1967, pp. 362363. 
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of the weights to some arbitrarily high number, include NIC, and find 
the unconstrained geometric optimal portfolio when the RFR is greater 
than 0? Yes, this is easily accomplished by subtracting the RFR from the 
expected returns of each of the components, but not from NIC (i.e., the 
expected return for NIC remains at 0, or an arithmetic average HPR of 
1.00). Now, solving the matrix will yield the unconstrained geometric 
optimal portfolio when the RFR is greater than 0. 

Since the unconstrained efficient frontier is the same portfolio at 
different levels of leverage, you cannot put a CML line on the uncon-
strained efficient frontier. You can only put CML lines on the AHPR or 
GHPR efficient frontiers if they are constrained (i.e., if the sum of the 
weights equals 1). It is not logical to put CML lines on the AHPR or 
GHPR unconstrained efficient frontiers. 

We have seen numerous ways of arriving at the geometric optimal 
portfolio. For starters, we can find it empirically, as was detailed in 
Portfolio Management Formulas and recapped in Chapter 1 of this 
text. We have seen how to find it parametrically in this chapter, firm a 
number of different angles, for any value of the risk-free rate. 

Now that we know how to find the geometric optimal portfolio we 
must learn how to use it in real life. The geometric optimal portfolio 
will give us the greatest possible geometric growth In the next chapter 
we will go into techniques to use this portfolio within given risk con-
straints. 
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Chapter 8 - Risk Management 
We now know haw to find the optimal portfolios by numerous dif-

ferent methods. Further, we now have a thorough understanding of 
the geometry of portfolios and the relationship of optimal quantities 
and optimal weightings. We can now see that the best way to trade any 
portfolio of any underlying instrument is at the geometric optimal 
level Doing so on a reinvestment of returns basis will maximize the 
ratio of expected gain to expected risk 

In this chapter we discuss how to use these geometric optimal 
portfolios within the risk constraints that we specify. Thus, whatever 
vehicles we are trading in, we can align ourselves anywhere we desire 
on the risk spectrum. In so doing, we will obtain the maximum rate of 
geometric growth for a given level of risk 

ASSET ALLOCATION 
You should be aware that the optimal portfolio obtained by this 

parametric technique will always be almost, if not exactly, the same as 
the portfolio that would be obtained by using an empirical technique 
such as the one detailed in the first chapter or in Portfolio Manage-
ment Formulas. 

As such, we can expect tremendous drawdowns on the entire port-
folio in terms of equity retracement. Our only guard against this is to 
dilute the portfolio somewhat. What this amounts to is combining the 
geometric optimal portfolio with the risk-free asset in some fashion. 
This we call asset allocation. The degree of risk and safety for any 
investment is not a function of the investment itself, but rather a func-
tion of asset allocation. 

Even portfolios of blue-chip stocks, if traded at their unconstrained 
geometric optimal portfolio levels, will show tremendous drawdowns. 
Yet these blue-chip stocks must be traded at these levels to maximize 
potential geometric gain relative to dispersion (risk) and also provide for 
attaining a goal in the least possible time. When viewed from such a 
perspective, trading blue-chip stocks is as risky as pork bellies, and pork 
bellies are no less conservative than blue-chip stocks. The same can be 
said of a portfolio of commodity trading systems and a portfolio of 
bonds. 

The object now is to achieve the desired level of potential geometric 
gain to dispersion (risk) by combining the risk-free asset with whatever 
it is we are trading, be it a portfolio of blue-chip stocks, bonds, or com-
modity trading systems. 

When you trade a portfolio at unconstrained fractional f, you are on 
the unconstrained GHPR efficient frontier, but to the left of the geomet-
ric optimal point-the point that satisfies any of Equations (7.06a) 
through (7.06e). Thus, you have less potential gain relative to the dis-
persion than you would if you were at the geometric optimal point. This 
is one way you can combine a portfolio with the risk-free asset. 

Another way you can practice asset allocation is by splitting your 
equity into two subaccounts, an active subaccount and an inactive 
subaccount. These are not two separate accounts, rather they are a way 
of splitting a single account in theory. The technique works as follows. 
First, you must decide upon an initial fractional level. Suppose that, 
initially, you want to emulate an account at the half f level. Your initial 
fractional level is .5 (the initial fractional level must be greater than zero 
and less than 1). This means you will split your account, with half the 
equity in your account going into the inactive subaccount and half going 
into the active subaccount. Assume you are starting out with a $100,000 
account. Initially, $50,000 is in the inactive subaccount and $50,000 is 
in the active subaccount. It is the equity in the active subaccount that 
you use to determine how many contracts to trade. These subaccounts 
are not real; they are a hypothetical construct you are creating in order to 
manage your money more effectively. You always use the full optimal 
fs with this technique. Any equity changes are reflected in the active 
portion of the account. Therefore, each day you must look at the ac-
count's total equity (closed equity plus open equity, marking open Posi-
tions to the market), and subtract the inactive amount (which will re-
main constant from day to day). The difference is your active equity, 
and it is on this difference that you will calculate how many contracts to 
trade at the full f levels. Now suppose that the optimal f for market sys-
tem A is 'to trade 1 contract for every $2,500 in account equity. You 
come into the first day with $50,000 in active equity, and therefore you 

will look to trade 20 contracts. If you were using the straight half f strat-
egy; you would end up with the same number of contracts on day one. 
At half f, you would trade 1 contract for every $5,000 in account equity 
($2,500/.5), and you would use the full $100,000 account equity to fig-
ure how many contracts to trade. Therefore, under the half f strategy, 
you would trade 20 contracts on this day as well. 

However, as soon as the equity in the accounts changes, the number 
of contracts you will trade changes as well. Assume now that you make 
$5,000 this next day, thus pushing the total equity in the account up to 
$105,000. Under the half f strategy, you will now be trading 21 con-
tracts. However, with the split-equity technique, you must subtract the 
now-constant inactive amount of $50,000 from your total equity of 
$105,000. This leaves an active equity portion of $55,000, from which 
you will figure your contract size at the optimal f level of 1 contract for 
every $2,500 in equity. Therefore, with the split-equity technique, you 
will now look to trade 22 contracts. 

The procedure works the same way on the downside of the equity 
curve, with the split-equity technique peeling off contracts at a faster 
rate than the fractional f strategy does. Suppose you lost $5,000 on the 
first day of trading, putting the total account equity at $95,000. With the 
fractional f strategy you would now look to trade 19 contracts 
($95,000/$5,000). However, with the split-equity technique you are now 
left with $45,000 of active equity, and thus you will look to trade 18 
contracts ($45,000/$2,500). 

Notice that with the split-equity technique, the exact fraction of op-
timal f that we are using changes with the equity changes. We specify 
the fraction we want to start at. In our example we used an initial frac-
tion of .5. When the equity increases, this fraction of the optimal f in-
creases too, approaching 1 as a limit as the account equity approaches 
infinity. On the downside, this fraction approaches 0 as a limit at the 
level where the total equity in the account equals the inactive portion. 
The fact that portfolio insurance is built into the split-equity technique is 
a tremendous benefit and will be discussed at length later in this chapter. 
Because the split-equity technique has a fraction for f that moves, we 
refer to it as a dynamic fractional ѓ strategy, as opposed to the straight 
fractional f (static fractional f) strategy. 

The static fractional f strategy puts you on the CML line somewhere 
to the left of the optimal portfolio if you are using a constrained portfo-
lio. Throughout the life of the account, regardless of equity changes, the 
account will stay at that point on the CML line. If you are using an un-
constrained portfolio (as you rightly should), you will be on the uncon-
strained efficient frontier (since there are no CML lines with uncon-
strained portfolios) at some point to the left of the optimal portfolio. As 
the equity in the account changes, you stay at the same point on the 
unconstrained efficient frontier. 

With the dynamic fractional f technique, you start at these same 
points for the constrained and unconstrained portfolios. However, as the 
account equity increases, the portfolio moves up and to the right, and as 
the equity decreases, the portfolio moves down and to the left. The lim-
its are at the peak of the curve to the right where the fraction of f equals 
1, and on the left at the point where the fraction off equals 0. 

With the static f method of asset allocation, the dispersion remains 
constant, since the fraction of optimal fused is constant. Unfortunately, 
this is not true with the dynamic fractional f technique. Here, as the 
account equity increases, so does the dispersion as the fraction of opti-
mal f used increases. The upper limit to this dispersion is the dispersion 
at full f as the account equity approaches infinity. On the downside, the 
dispersion diminishes rapidly as the fraction of optimal f used ap-
proaches zero as the total account equity approaches the inactive subac-
count equity. Here, the lower limit to the dispersion is zero. 

Using the dynamic fractional f technique is analogous to trading an 
account full out at the optimal f levels, where the initial size of account 
is the active equity portion. So we see that there are two ways to dilute 
an account down from the full geometric optimal portfolio, two ways to 
exercise asset allocation. We can trade a static fractional or a dynamic 
fractional f. The dynamic fractional will also have dynamic variance, a 
slight negative, but it also provides for portfolio insurance (more on this 
later). Although the two techniques are related, you can also see that 
they differ. Which is best? Assume we have a system in which the aver-
age daily arithmetic HPR is 1.0265. The standard deviation in these 
daily HPRs is .1211, so the geometric mean is 1.019. Now, we look at 
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the numbers for a .2 static fractional f and a .1 static fractional f by using 
Equations (2.06) through (2.08): 
(2.06) FAHPR = (AHPR-1)*FRAC+1 
(2.07) FSD = SD*FRAC 
(2.08) FGHPR = (FAHPR^2-FSD^2)^1/2 

where 
FRAC = The fraction of optimal f we are solving for 
AHPR = The arithmetic average HPR at the optimal f, 
SD = The standard deviation in HPRs at the optimal f. 
FAHPR = The arithmetic average HPR at the fractional f. 
FSD = The standard deviation in HPRs at the fractional f, 
FGHPR = The geometric average HPR at the fractional f. 
The results then are: 

 Full f  .2 f  .1 f  
AHPR  1.0265  1.0053  1.00265  
SD  .1211  .02422  .01211  
GHPR  1.01933 1.005  1.002577  

Now recall Equation (2.09a), the time expected to reach a specific 
goal: 
(2.09a) N = ln(Goal)/1n(Geometric Mean) 

where 
N = The expected number of trades to reach a specific goal. 
Coal = The goal in terms of a multiple on our starting stake, a TWR. 

ln() = The natural logarithm function. 
Now, we compare trading at the -2 static fractional f strategy, with a 

geometric mean of 1.005, to the .2 dynamic fractional f strategy (20% as 
initial active equity) with a daily geometric mean of 1.01933. The time 
(number of days since the geometric means are daily) required to double 
the static fractional f is given by Equation (2.09a) as: 
ln(2)/ln( 1.005) = 138.9751 

To double the dynamic fractional f requires setting the goal to 6. 
This is because if you initially have 20% of the equity at work, and you 
start out with a $100,000 account, then you initially have $20,000 at 
work. The goal is to make the active equity equal $120,000. Since the 
inactive equity remains at $80,000, you will then have a total of 
$200,000 on your account. Thus, to make a $20,000 account grow to 
$120,000 means you need to achieve a TWR of 6. Therefore, the goal is 
6 in order to double a .2 dynamic fractional f: 
1n(6)/ln(1.01933) = 93.58634 

Notice that it took 93 days for the dynamic fractional f versus 138 
days for the static fractional f. 

Now look at the .1 fraction. The number of days expected in order 
for the static technique to double is: 
ln(2)/ln( 1.002577) = 269.3404 

Compare this to doubling a dynamic fractional f that is initially set 
to .1 active. You need to achieve a TWR of 11, so the number of days 
required for the comparative dynamic fractional f strategy is: 
ln(11)/ln( 1.01933) = 125.2458 

To double the account equity at the .1 level of fractional f takes 269 
days for our static example, as compared to 125 days for the dynamic. 
The lower the fraction for f, the faster the dynamic will outperform the 
static technique. 

Now take a look at tripling the .2 fractional f. The number of days 
expected by the static technique to triple is: 
ln(3)/ln( 1.005) = 220.2704 

This compares to its dynamic counterpart, which requires: ln(11)/ln( 
1.01933) = 125.2458 days 

To make 400% profit (i.e., a goal or TWR of 5) requires of the .2 
static technique: 
ln(5)/ln( 1.005) = 322.6902 days 

Which compares to its dynamic counterpart: 
ln(21)/ln( 1.01933) = 159.0201 days 

The dynamic technique takes almost half as much time as the static 
to teach the goal of 400% in this example. However, if you look out in 
time 322.6902 days to where the static technique doubled, the dynamic 
technique would be at a TWR of: 

TWR = .8+(1.01933^322.6902)*.2  
= .8+482.0659576*.2  
= 97.21319 

This represents making over 9,600% in the time it took the static to 
make 100% 

We can now amend Equation (2.09a) to accommodate both the 
static and fractional dynamic f strategies to determine the expected 
length required to achieve a specific goal as a TWR. To begin with, for 
the static fractional f, we can create Equation (2.09b): 
(2.09b) N = ln(Goal)/ln(A) 

where 
N = The expected number of trades to reach a specific goal. 
Goal = The goal in terms of a multiple on our starting stake, a TWR. 
A = The adjusted geometric mean. This is the geometric mean, run 

through Equation (2.08 to determine the geometric mean for a given 
static fractional f. 

ln() = The natural logarithm function. For a dynamic fractional f, we 
have Equation (2.09c): 
(2.09c) N = ln(((Goal-1)/ACTV)+l)/ln(Geometric Mean) 

where 
N = The expected number of trades to reach a specific goal. 
Goal = The goal in terms of a multiple on our starting stake, a TWR. 
ACTV = The active equity percentage. 
Geometric Mean = This is simply the raw geometric mean, there is 

no adjustment performed on it as there is in (2.09b). 
ln() = The natural logarithm function. 
To illustrate the use of (2.09c), suppose we want to determine how 

long it will take an account to double (i.e., TWR = 2) at .1 active equity 
and a geometric mean of 1.01933: 
(2.09) N = ln(((Goal-1)/ACTV)+l)/ln(Geometric Mean)-ln(((2-
1)/.l)+l)/ln(1.01933)  
= ln((1/.1)+1)/ln(1.01933)  
= ln( 10+l)/ln( 1.01933)  
= ln(11)/ln( 1.01933)  
= 2.397895273/.01914554872  
= 125.2455758 

Thus, if our geometric mean is determined on a daily basis, we can 
expect to double in about 125% days. If our geometric mean is deter-
mined on a trade-by-trade basis, we can expect to double in about 125% 
trades. So long as you are dealing with an N great enough such that 
(2.09c) is less than (2.09b), then you are benefiting from dynamic 
fractional f trading. 

TWR

Time -->

static

dynamic

Ultimately the dynamic 
makes infinetely more than 

static fractional f strategy for 
the same initial level of risk

 
Figure 8-1 Static versus dynamic fractional f. 

Figure 8-1 demonstrates the relationship between trading at a static 
versus a dynamic fractional f strategy over time. The more the time that 
elapses, the greater the difference between the static fractional f and the 
dynamic fractional f strategy. Asymptotically, the dynamic fractional f 
strategy provides infinitely greater wealth than its static counterpart. 

In the long run you are better off to practice asset allocation in a 
dynamic fractional f technique. That is, you determine an initial level, a 
percentage, to allocate as active equity. The remainder is inactive equity. 
The day-to-day equity changes are reflected in the active portion only. 
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The inactive dollar amount remains constant. Therefore, each day you 
subtract the constant inactive dollar amount from your total account 
equity. This difference is the active portion, and it is on this active por-
tion that you will figure your quantities to trade in based on the optimal 
f levels. 

Eventually, if things go well for you, your active portion will dwarf 
your inactive portion, and you'll have the same problem of excessive 
variance and Potential drawdown that you would have had initially at 
the full optimal f level. We now discuss four ways to treat this "prob-
lem." There are no fine lines delineating these four methods, and it is 
possible to mix methods to meet your specific needs. 

REALLOCATION: FOUR METHODS 
First, a word about the risk-free asset. Throughout this chapter the 

risk-free asset has been treated as though it were simply cash, or near-
cash equivalents such as Treasury Bills or money market funds (assum-
ing that there is no risk in any of these). 

The risk-free asset can also be any asset which the investor believes 
has no risk, or risk so negligible as to be nonexistent. This may include 
long-term government and corporate bonds. These can be coupon bonds 
or zeros. Holders may even write call options against these risk-free 
assets to further enhance their returns. 

Many trading programs employ zero coupon bonds as the risk-free 
asset. For every dollar invested in such a program, a dollar's worth of 
face value zero coupon bonds is bought in the account. Such a bond, if it 
were to mature in, say, 5 years, would surely cost less than a dollar. The 
difference between the dollar face value of the bond and its actual cost is 
the return the bond will generate over its remaining life. This difference 
is then applied toward the trading program. If the program loses all of 
this money, the bonds will still mature at their full face value. At the 
time of the bond maturity, the investor is then paid an amount equal to 
his initial investment, although he would not have seen any return on 
that initial investment over the term that the money was in the program 
(5 years in the case of this example). Of course, this is predicated upon 
the managers of the program not losing an amount in excess of the dif-
ference between the face value of the bond and its market cost. 

This same principle can be applied by any trader. Further, you need 
not use zero coupon bonds. Any kind of interest-generating vehicle can 
be used. The point is that the risk-free asset need not be simply "dead" 
cash. It can be an actual investment program, designed to provide a real 
yield, and this yield can be made to offset potential losses in the pro-
gram. The main consideration is that the risk-free asset be regarded as 
risk-free (i.e., treated as though safety of principal were the primary 
concern). 

Now on with our discussion of allocating between the risk-free as-
set, the "inactive" portion of the account, and the active, trading portion. 
The first, and perhaps the crudest, way to determine what the ac-
tive/inactive percentage split will be initially, and when to reallocate 
back to this percentage, is the investor utility method. This can also 
referred to as the gut feel method. Here, we assume that the drawdowns 
to be seen will be equal to a complete retracement of active equity. 
Therefore, if we are willing to see a 50% drawdown, we initially allo-
cate 50% to active equity. Likewise, if we are tilling to see a 10% draw-
down, we initially split the account into 10% active, 90*inactive. Basi-
cally, with the investor utility method you are trying to allocate as high a 
percentage to active equity as you are willing to risk losing. 

Now, it is possible that the active portion may be completely wiped 
out, at which point the trader no longer has any active portion of his 
account left with which to continue trading. At such a point, it will be 
necessary for the trader to decide whether to keep on trading, and if so, 
what percentage of the remaining funds in the account (the inactive 
subaccount) to allocate as new active equity. This new active equity can 
also be lost, so it is important that the trader bear in mind at the outset of 
this program that the initial active equity is not the maximum amount 
that can be lost. Furthermore, in any trading where there is unlimited 
liability on a given position (such as a futures trade) the entire account is 
at risk, and even the trader's assets outside of the account are at risk! 
The reader should not be deluded into thinking that he or she is immune 
from a string of locked limit days, or an enormous opening gap that 
could take the entire account into a deficit position, regardless of what 
the "active" equity portion of the account is. 

This approach also makes a distinction between a drawdown in 
blood and a drawdown in diet cola. For instance, if a trader decides that 
a 25% equity retracement is the most that the trader would initially care 
to sit through, he or she should initially split the account into 75% inac-
tive, 2.5% active. Suppose the trader is starting out with a $100,000 
account. Initially, therefore, $25,000 is active and $75,000 is inactive. 
Now suppose that the account gets up to $200,000. The trader still has 
$75,000 inactive, but now the active portion is up to $125,000. Since he 
or she is trading at the full f amount on this $125,000, it is very possible 
to lose a good portion, if not all of this amount by going into an histori-
cally typical drawdown at this point. Such a drawdown would represent 
greater than a 25% equity retracement, even though the amount of the 
initial starting equity that would be lost would be 25% if the total ac-
count value plunged down to the inactive $75,000. 

An account that starts out at a lower percentage of active equity will 
therefore be able to reallocate sooner than an account trading the same 
market systems starting out at a higher percentage of active equity. 
Therefore, not only does the account that starts out at a lower percentage 
of active equity have a lower potential drawdown on initial margin, but 
also since the trader can reallocate sooner he is less likely to get into 
awkward ratios of active to inactive equity (assuming an equity runup) 
than if he started out at a higher initial active equity percentage. 

As a trader, you are also faced with the question of when to reallo-
cate, whether you are using the crude investor utility method or one of 
the more sophisticated methods about to be described. You should de-
cide in advance at what point in your equity, both on the upside and on 
the downside, you want to reallocate. For instance, you may decide that 
if you get a 100% return on your initial investment, it would be a good 
time to reallocate. Likewise, you should also decide in advance at what 
point on the downside you will reallocate. Usually this point is the point 
where there is either no active equity left or the active equity left doesn't 
allow for even 1 contract in any of the market systems you are using. 
You should decide, preferably in advance, whether to continue trading if 
this downside limit is hit, and if so, what percentage to reallocate to 
active equity to start anew. 

Also, you may decide to reallocate with respect to time, particularly 
for professionally managed accounts. For example, you may decide to 
reallocate every quarter. This could be incorporated with the equity 
limits of real-location. You may decide that if the active portion is com-
pletely wiped out, you will stop trading altogether until the quarter is 
over. At the beginning of the next quarter, the account is reallocated 
with X% as active equity and 100-X% as inactive equity. 

It is not beneficial to reallocate too frequently. Ideally, you will 
never reallocate. Ideally, you will let the fraction of optimal f you are 
using keep approaching 1 as your account equity grows. In reality, how-
ever, you most likely will reallocate at some point in time. It is to be 
hoped you will not reallocate so frequently that it becomes a problem. 

Consider the case of reallocating after every trade or every day. 
Such is the case with static fractional f trading. Recall again Equation 
(2.09a), the time required to reach a specific goal. 

Let's return to our system, which we are trading with a .2 active por-
tion and a geometric mean of 1.01933. We will compare this to trading 
at the static fractional .2 f, where the resultant geometric mean is 1.005. 
If we start with a $100,000 account and we want to reallocate at 
$110,000 total equity, the number of days (since our geometric means 
here are on a per day basis) required by the static fractional .2 f is: 
ln(1.1)/ln(1.005) = 19.10956 

This compares to using $20,000 of the $100,000 total equity at the 
full f amount and trying to get the total account up to $110,000. This 
would represent a goal of 1.5 times the $20,000: 
ln(1.5)/ln(1.01933) = 21.17807 

At lower goals, the static fractional f strategy grows faster than its 
corresponding dynamic fractional f counterpart. As time elapses, the 
dynamic overtakes the static, until eventually the dynamic is infinitely 
farther ahead. Figure 8-1 displays this relationship between the static 
and dynamic fractional fs graphically. 

If you reallocate too frequently you are only shooting yourself in the 
foot, as the technique would then be inferior to its static fractional f 
counterpart, Therefore, since you are best off in the long run to use the 
dynamic fractional f approach to asset allocation, you are also best off to 
reallocate funds between the active and inactive subaccounts as infre-
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quently as possible. Ideally, you will make this division between active 
and inactive equity only once, at the outset of the program. 

Generally, the dynamic fractional f will overtake its static counter-
part faster the lower the portion of initial active equity. In other words, a 
portfolio with an initial active equity of .1 will overcome its static coun-
terpart faster than a portfolio with an initial active equity allocation of .2 
will overtake its static counterpart. At an initial active equity allocation 
of 100% (1.0), the dynamic never overtakes the static fractional f (rather 
they grow at the same rate). Also affecting the rate at which the dynamic 
fractional f overtakes its static counterpart is the geometric mean of the 
portfolio itself. The higher the geometric mean, the sooner the dynamic 
will overtake the static. At a geometric mean of 1.0, the dynamic never 
overtakes its static counterpart. 

A second method for determining initial active equity amounts and 
real-location is the scenario planning method. Under this method the 
amount allocated initially is determined mathematically as a function of 
the different scenarios, their outcomes, and their probabilities of occur-
rence, for the performance of the account. This exercise, too, can be 
performed at regular intervals. The technique involves the scenario 
planning method detailed in Chapter 4. 

As an example, suppose you are pondering three possible scenarios 
for the next quarter: 
Scenario  Probability  Result  
Drawdown  50%  -100%  
No gain  25%  0%  
Good runup  25%  +300%  

The result column pertains to the results on the account's active eq-
uity. Thus, there is a 50% chance here of a 100% loss of active equity, a 
25% chance of the active equity remaining unchanged, and a 25% 
chance of a 360% gain on the active equity. 

In reality you should consider more than three scenarios, but for 
simplicity, only three are used here. You input the three different scenar-
ios, their probabilities of occurrence, and their results in units, where 
each unit represents a percentage point. The results are determined 
based on what you see happening for each scenario if you were trading 
at the full optimal f amount. 

Inputting these three scenarios yields an optimal f of .11. Don't con-
fuse this optimal f with the optimal fs of the components of the portfolio 
you are trading. They are different. Optimal f here pertains to the opti-
mal f of the scenario planning exercise you just performed, which also 
told you the optimal amount to allocate as active equity for your given 
parameters. Therefore, given these three scenarios, you are best off in an 
asymptotic sense to allocate 11% to active equity and the remaining 
89% to inactive. At the beginning of the next quarter, you perform this 
exercise again, and determine your new allocations at that time. Since 
the amount of funds you have to reallocate for a given quarter is a func-
tion of how you have allocated them for the previous quarter, you are 
best off to use this optimal f amount, as it will provide you with the 
greatest geometric growth in the long run. (Again, that's provided that 
your input-the scenarios, their probabilities, and the corresponding re-
sults-is accurate.) 

This scenario planning method of asset allocation is also useful if 
you are trying to incorporate the opinion of more than one adviser. In 
our example, rather than pondering three possible scenarios for the next 
quarter, you might want to incorporate the opinions of three different 
advisers. The probability column corresponds to how much faith you 
have in each different adviser. So in our example, the first scenario, a 
50% probability of a 100% loss on active equity, corresponds to a very 
bearish adviser whose opinion deserves twice the weight of the other 
two advisers. 

Recall the share average method of pulling out of a program, which 
was examined in Chapter 2. We can incorporate this concept here as a 
reallocation method. In so doing, we will be creating a technique that 
systematically takes profits out of a program advantageously and also 
takes us out of a losing program. 

The program calls for pulling out a regular periodic percentage of 
the total equity in the account (active equity + inactive equity). There-
fore, each month, quarter, or whatever time period you are using, you 
will pull out X% of your equity. Remember though, that you want to get 
enough time in each period to make certain that you are benefiting, at 
least somewhat, by dynamic fractional f. Any value for N that is high 

enough to satisfy Equation (8.01) is a value for N that we can use and be 
certain that we are benefiting from dynamic fractional f: 
(8.01) FG^N <= G^N*FRAC+1-FRAC 

where 
FG = The geometric mean for the fractional f, found by Equation 

(2.08). 
N = The number of periods, with G and FG figured on the basis of 1 

period. 
G = The geometric mean at the optimal f level. 
FRAC = The active equity percentage. 
If we are using an active equity percentage of 20% (i.e., FRAC = 

.2), then FG must be figured on the basis of a .2 f. Thus, for the case 
where our geometric mean at full optimal f is 1.01933, and the .2 f (FG) 
is 1.005, we want a value for N that satisfies the following: 
1.005^N <= 1.01933^N*.2+1-.2 

We figured our geometric mean for optimal f(G) and therefore also 
our geometric mean for the fractional f (FG) on a daily basis, and we 
want to see if 1 quarter is enough time. Since there are about 63 trading 
days per quarter, we want to see if an N of 63 is enough time to benefit 
by dynamic fractional f. Therefore, we check Equation (8.01) at a value 
of 63 for N: 
1.005^63 <= 1.01933^63*.2+1-.2 
1.369184237 <= 3.340663933*.2+1-.2 
1.369184237 <= .6681327866+1-.2 
1.369184237 <= 1.6681327866-.2 
1.369184237 <= 1.4681327866 

The equation is satisfied, since the left side is less than or equal to 
the right side. Thus, we can reallocate on a quarterly basis under the 
given values here and be benefiting from using dynamic fractional f. 

And where do you put this now pulled-out equity? Why, it goes 
right back into the account as inactive equity. Each period you will fig-
ure the total value of your account, and transfer that amount from active 
to inactive equity. Thus, there is reallocation. For example, again as-
sume a $100,000 account where $20,000 is regarded as the active 
amount. Say you are share averaging out on a quarterly basis, and the 
quarterly percentage you pull out is 2%. Now assume that at the begin-
ning of the following quarter the account still stands at $100,000 total 
equity, of which $20,000 is active equity. You now take out 2% of the 
total account equity of $100,000 and transfer that amount from active to 
inactive equity. Therefore, you transfer $2,000 from active to inactive 
equity, and your $100,000 account now has $18,000 active equity and 
$82,000 inactive. 

We hope that the program will outpace the periodic percentage 
withdrawals to the upside. Suppose that in our last example, our 
$100,000 account goes to $110,000 at the end of the quarter. Now, when 
we go to reallocate 2%, $2,200, we debit our active equity amount of 
$30,000 and credit our inactive amount of $80,000. Thus, we have 
$27,800 active equity and $82,200 inactive. Since our active equity after 
the reallocation is still greater than it was at the beginning of the previ-
ous period, we can say that the program has outpaced the reallocation. 

On the other hand, if the program loses money, or if the program 
goes nowhere (in which case you are risking money repeatedly, yet not 
making any upward progress on your equity), this technique has you 
eventually end up with the entire account equity as inactive equity. At 
that point, you have automatically ceased trading a losing program. 

Naturally, two questions must now crop up. The first is, "What must 
this periodic percentage reduction be such that if the account equity 
were to stagnate after N periodic deductions from active equity, the 
program would automatically terminate (i.e., active equity equal to 0)?" 
The solution is given by Equation (8.02): 
(8.02) P = 1-INACTIVE^(1/N) 

where 
P = The periodic percentage of the total account equity that should 

be transferred from active to inactive equity. 
INACTIVE = The inactive percent of account equity. 
N = The number of periods we want the program to terminate in if 

the equity stagnates. 
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Thus, if we were to make quarterly transfers of equity from active to 
inactive, and we were using an initial allocation of 80% as inactive eq-
uity, and we wanted the program to terminate in 2,5 years (10 quarters-
i.e., N = 10), the quarterly percentage would be: 
P = 1-.8^(1/10)  
= 1-.8^.1  
= 1-.9779327685  
= .0220672315 

Thus, we should pull out 2.20672315% of the total equity each 
quarter, and transfer that from active to inactive equity. 

The second question to arise is, "If we are pulling out a certain 
given percentage, what must the number of periods be in order for the 
active equity to equal 0?" In other words, if we know we want to pull 
out P% each period (again we assume that the periods here are quarters) 
and if the account equity stagnates, over how many periods, N, must we 
make these equity transfers until the active equity equals 0. The solution 
is given by Equation (8.03): 
(8.03) N = ln(INACTIVE)/ln(l-P) 

where 
P = The periodic percentage of the total account equity that will be 

transferred from active to inactive equity. 
INACTIVE = The inactive percentage of account equity. 
N = The number of periods it will take for the program to terminate 

if the equity stagnates. 
Again, assume that the initial inactive equity is allocated as 80% 

and that you are pulling out 2.20672315% per quarter. Therefore, the 
number of periods, quarters in this case, required until the program ter-
minates if the equity stagnates is: 
N = ln(.8)/ln(l-.0220672315) = ln(.8)/ln(.9779327685) = -.223143/-
.0223143 = 10 

For the given values, it would thus take 10 periods for the program 
to terminate. 

Share averaging will get us out of a portfolio over time at an above-
average price, just as dollar averaging will get us into a portfolio over 
time at a below-average cost. Consider now that most people do just the 
opposite of this, hence they are getting into and out of a portfolio at 
prices worse than average. When someone opens an account to trade, 
they dump all the trading capital in and just start trading. When they 
want to add funds, they will almost always invariably add in single 
blocks of cash, unable to make equal dollar deposits over time. 

A trader trying to live off trading profits will generally withdraw 
enough money from the account on a periodic basis to cover his living 
expenses, regardless of what percentage of his account this constitutes. 
This is exactly what he should not do. Suppose that the trader's living 
expenses are constant from one month to the next, SO he is withdrawing 
a constant dollar amount. By doing this he is accomplishing the exact 
opposite of share averaging in that he will be withdrawing a larger per-
centage of his funds when the account balance is lower, and a smaller 
percentage when the account balance is higher. In short, he is slowly 
getting out of the portfolio (or a portion of it) over time at a below-
average price. 

Rather, the trader should withdraw a constant percentage (of total 
account equity, active plus inactive) each month. The withdrawn funds 
can be put into a middle account, a simple demand deposit account. 
Then from this demand deposit account the trader can withdraw a con-
stant dollar amount each month to meet his living expenses. If the trader 
were to bypass this middle account and withdraw a constant dollar 
amount directly from the trading account, it would cause the ideas of 
share averaging and dollar averaging to work against him. 

Recall from Chapter 2 the observation that when you are trading at 
the optimal f levels you can expect to be in the worst-case drawdown 35 
to 55% of the time period you are looking at. Generally, this doesn't sit 
well with most traders. Most traders want or need a much smoother 
equity curve, either to satisfy the needs of their living expenses or for 
other, more emotional, reasons. What trader wouldn't like to make a 
steady $X per day from trading? This 35 to 55% principle is true on a 
full optimal f basis, and therefore is true on a dynamic fractional f basis 
as well, but is not true on a static fractional f basis. Since the dynamic is 
asymptotically better than its static fractional f counterpart, we can ex-
pect this 35 to 55% principle to apply to us if we are going to trade our 

account in the mathematically optimal fashion-that is, at full optimal f 
for a given level of initial risk (our initial active equity). 

The establishment of a buffer demand deposit account allows for the 
account to be traded in the mathematically optimal fashion (dynamic 
optimal 0 while it also allows the share averaging method of reallocation 
to work (i.e., cash is transferred to the buffer demand deposit account) 
and allows for a steady dollar outcome from the buffer demand deposit 
account, thus meeting the trader's needs. Thus, if a trader needs $X per 
day to meet his needs, be they living expenses or otherwise, these can be 
satisfied without sabotaging the mathematics in the account by estab-
lishing and administering a buffer demand deposit account, and share 
averaging funds on a periodic basis from the trading program to this 
buffer account. The trader then makes regular withdrawals of a constant 
dollar amount from this buffer account. 

Of course, the regular dollar withdrawals must be for an amount less 
than the smallest amount transferred from the trading account to the 
buffer account. For example, if we are looking at a $500,000 account, 
we are withdrawing 1% per month, and we start out with 20% initial 
active equity, then we know that our smallest withdrawal from the trad-
ing account will be .01*500,000*(1-.2) = .01*500,000*.8 = $4,000. 
Therefore, our constant dollar withdrawal from the buffer account 
should be for an amount no greater than $4,000. The buffer account can 
also be the inactive subaccount. 

Before we come to the fourth asset allocation technique, a certain 
confusion must be cleared up. With optimal fixed fractional trading, you 
can see that you add more and more contracts when your equity in-
creases, and vice versa when it decreases. This technique makes the 
greatest geometric growth of your equity in the long run. 

WHY REALLOCATE? 
Reallocation seems to do just the opposite of what we want to do in 

that reallocation trims back after a runup in equity or adds more equity 
to the active portion after a period where the equity has been run down. 
Reallocation is a compromise between the theoretical ideal and the real-
life implementation. These techniques allow us to make the most of this 
compromise. 

Ideally, you would never reallocate. When your humble little 
$10,000 account grew to $10 million, it would never go through reallo-
cation. Ideally, you would sit through the drawdown that took your ac-
count back down to $50,000 from the $10 million mark before it shot up 
to $20 million. Ideally, if your active equity were depleted down to 1 
dollar, you would still be able to trade a fractional contract (a "micro-
contract"?). In an ideal world, all of these things would be possible. In 
real life, you are going to reallocate at some point on the upside or the 
downside. Given that you are going to do this, you might as well do it in 
a systematic, beneficial way. 

In reallocating, or compromising, you "reset" things back to a state 
you would be at if you were starting the program all over again, only at 
a different equity level. Then you let the outcome of the trading dictate 
where the fraction off used floats to by using a dynamic fractional fin 
between reallocations. Things can get levered up awfully fast, even 
when you start out with an active equity allocation of only 20%. Re-
member, you are using the full optimal f on this 20%, and if your pro-
gram does modestly well, you'll be trading in substantial quantities rela-
tive to the total equity in the account in short order. 

PORTFOLIO INSURANCE – THE FOURTH REALLOCA-
TION TECHNIQUE 

Assume for a moment that you are managing a stock fund. Figure 8-
2 depicts a typical portfolio insurance strategy (also known as dynamic 
hedging). The floor in this example is the current portfolio value of 100 
(dollars per share). The typical portfolio follows the equity market 1 for 
1. This is represented by the unbroken line. The insured portfolio is 
depicted here by the dotted line. Note that the dotted line is below the 
unbroken line when the portfolio is at or above its initial value (100). 
This difference represents the cost of the portfolio insurance. Otherwise, 
as the portfolio falls in value, portfolio insurance provides a floor on the 
value of the portfolio at a desired floor value (in this case the present 
value of 100) minus the cost of performing the strategy. 

In a nutshell, portfolio insurance is akin to buying a put option on 
the portfolio. Suppose the fund you are managing consists of only 1 
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stock, which is currently priced at 100. Buying a put option on this 
stock, with a strike price of 100, at a cost of 10, would replicate the 
dotted line in Figure 8-2. The worst that could happen now to your port-
folio of 1 stock and a put option on it is that you could exercise the put, 
which sells your stock at 100, and you lose the value of the put, 10. 
Thus, the worst that this portfolio can be worth is 90, no matter how far 
down the underlying stock goes.  

In a nutshell, portfolio insurance is akin to buying a put option on 
the portfolio. Suppose the fund you are managing consists of only 1 
stock, which is currently priced at 100. Buying a put option on this 
stock, with a strike price of 100, at a cost of 10, would replicate the 
dotted line in Figure 8-2. The worst that could happen now to your port-
folio of 1 stock and a put option on it is that you could exercise the put, 
which sells your stock at 100, and you lose the value of the put, 10. 
Thus, the worst that this portfolio can be worth is 90, no matter how far 
down the underlying stock goes. On the upside, your insured portfolio 
suffers somewhat in that the value of the portfolio is always reduced by 
the cost of the put. 
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Figure 8-2 Portfolio insurance. 

Clearly, looking at Figure 8-2 and considering the fundamental 
equation for trading, the estimated TWR of Equation (1.19c), you can 
intuitively see that an insured portfolio is superior to an uninsured port-
folio in an asymptotic sense. In other words, if you're only as smart as 
your dumbest mistake, you have put a floor on that dumbest mistake by 
portfolio insurance. 

Now consider that being long a call option will give you the same 
profile as being long the underlying and long a put option with the same 
strike price and expiration date as the call option. Here, when we speak 
of the same profile, we mean an equivalent position in terms of the 
risk/reward characteristics at different values for the underlying. Thus, 
the dotted line in Figure 8-2 can also represent a portfolio comprised of 
simply being long the 100 call option at expiration. 

Here is how dynamic hedging works to provide portfolio insurance. 
Suppose you buy 100 shares of a single stock for your fund, at a price of 
$100 per share. You now replicate the call option by using this underly-
ing stock. You do this by determining an initial floor for the stock. The 
floor you choose is, say, 100. You also determine an expiration date for 
the hypothetical option you are going to create. Say the expiration date 
you choose is the date on which this quarter ends. 

Now you figure the delta for this 100 call option with the chosen 
expiration date. You can use Equation (5.05) to find the delta of a call 
option on a stock (you can use the delta for whatever option model you 
are using; we're using the Black-Scholes Stock Option Model here). 
Suppose the delta is .5. This means that you should be 50% invested in 
the given stock. You would thus have only 50 shares of stock on rather 
than the 100 shares you would have on if you were not practicing port-
folio insurance. As the value of the stock increases, so will the delta, and 
likewise the number of shares you hold. The upside limit is a delta at 1, 
where you would be 100% invested. In our example, at a delta of 1 you 
would have on 100 shares. As the stock price decreases, so does the 
delta, and so does the size of your position in the stock. The downside 
limit is at a delta of 0 (where the put delta is-1), at which point you 
wouldn't have any position in the stock. 

Operationally, stock fund managers have used noninvasive methods 
of dynamic hedging. Such a technique involves not having to trade the 
cash portfolio. Rather, the portfolio as a whole is adjusted to what the 
current delta should be as dictated by the model by using futures, and 
sometimes put options. One benefit of using futures is low transaction 
costs. Selling short futures against the portfolio is equivalent to selling 
off part of the portfolio and putting it into cash. As the portfolio falls, 
more futures are sold, and as it rises, these short positions are covered. 
The loss to the portfolio as it goes up and the short futures positions are 
covered is what accounts for the portfolio insurance cost, the cost of the 
replicated put options. Dynamic hedging, though, has the benefit of 
allowing us to closely estimate this cost at the outset. To managers try-
ing to implement such a strategy, it allows the portfolio to remain un-
touched while the appropriate asset allocation shifts are performed 
through futures and/or options trades. This noninvasive technique of 
using futures and/or options permits the separation of asset allocation 
and active portfolio management. 

To implement portfolio insurance, you must continuously adjust the 
portfolio to the appropriate delta. This means that, say each day, you 
must input into the option pricing model the current portfolio value, 
time of expiration, interest rate levels, and portfolio volatility to deter-
mine the delta of the put option you are trying to replicate. Adding this 
delta (which is a number between 0 and -1) to 1 will give you the corre-
sponding call's delta. This is the hedge ratio, the percentage that you 
should be invested in the fund. You must make sure that you stay as 
close to this hedge ratio as possible. 

Suppose your hedge ratio for the present moment is .46. Say that the 
size of the fund you are managing is the equivalent to 50 S&P futures 
contracts. Since you only want to be 46% invested, you want to be 54% 
dis-invested. Fifty-four percent of 50 contracts is 27 contracts. There-
fore, at the present price level of the fund, at this point in time, for the 
given interest rate and volatility levels, the fund should be short 27 S&P 
contracts along with its long position in cash stocks. Because the delta 
needs to be recomputed on an ongoing basis, and portfolio adjustments 
constantly monitored, the strategy is called a dynamic hedging strategy. 

One problem with using futures in the strategy is that the futures 
market does not exactly track the cash market. Further, the portfolio you 
are selling futures against may not exactly follow the cash index upon 
which the futures market is traded. These tracking errors can add to the 
expense of a portfolio insurance program. Furthermore, when the option 
being replicated gets very near to expiration and the portfolio value is 
near the strike price, the gamma of the replicated option goes up astro-
nomically. Gamma is the instantaneous rate of change of the delta or 
hedge ratio. In other words, gamma is the delta of the delta. If the delta 
is changing very fast (i.e., if the replicated option has a high gamma), 
portfolio insurance becomes increasingly more cumbersome to perform. 
There are numerous ways to work around this problem, some of which 
are very sophisticated. One of the simplest involves not only trying to 
match the delta of the replicated option, but using futures and options 
together to match both the delta and gamma of the replicated option. 
Again, this high gamma usually becomes a problem only when expira-
tion draws near and the portfolio value and the replicated option's strike 
price are very close. 

There is a very interesting relationship between optimal f and port-
folio insurance. When you enter a position, you can state that f percent 
of your funds are invested. For example, consider a gambling game in 
which your optimal f is .5, your biggest loss is -1, and your bankroll is 
$10,000. In such a case, you would bet $1 for every $2 in your stake, 
since -1, the biggest loss, divided by -.5, the negative optimal f, is 2. 
Dividing $10,000 by 2 yields $5,000. You would therefore bet $5,000 
on the next bet, which is f percent, 50%, of your bankroll. Had you mul-
tiplied our bankroll of $10,000 by f, .5, you would have arrived at the 
same $5,000 result. Hence, you have bet f percent of our bankroll. 

Likewise, if your biggest loss were $250 and everything else re-
mained the same, you would be making 1 bet for every $500 in your 
bankroll (since -$250/-.5 = $500). Dividing $10,000 by $500 means that 
you would make 20 bets. Since the most you can lose on any one bet is 
$250, you have thus risked f percent, 50% of our stake, in risking $5,000 
($250*20). We can therefore state that f equals the percentage of our 
funds at risk, or f equals the hedge ratio. Since f is only applied on the 
active portion of our portfolio in a dynamic fractional f strategy, the 
hedge ratio of the portfolio is: 
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(8.04a) H = f*A/E 
where 
H = The hedge ratio of the portfolio. 
f = The optimal f (0 to 1). 
A = The active portion of funds in an account. 
E = The total equity of the account. 
Equation (8.04a) gives us the hedge ratio for a portfolio being 

traded on a dynamic fractional f strategy. Portfolio insurance is also at 
work in a static fractional f strategy, only the quotient A/E equals 1, and 
the value for f, the optimal f, is multiplied by whatever value we are 
using for the fraction off. Thus, in a static fractional f strategy the hedge 
ratio is: 
(8.04b) H = f*FRAC 

where 
H = The hedge ratio of the portfolio. 
f = The optimal f (0 to 1). 
FRAC = The fraction of optimal f that you are using. 
Since there is usually more than one market system working in an 

account, we must account for this. When this is the case, the variable fin 
Equation (8.04a) or (8.04b) must be calculated as: 
(8.05) f = ∑[i = 1,N]fi*Wi 

where 
f = The f (0 to 1) to be input in Equation (8.04a) or (8.04b). 
N = The total number of market systems in the portfolio. 
Wi = The weighting of the ith component in the portfolio (from the 

identity matrix). 
fi = The f factor (0 to 1) of the ith component in the portfolio. 
We can state that in trading an account on a dynamic fractional f ba-

sis we are performing portfolio insurance. Here, the floor is equal to the 
initial inactive equity plus the cost of performing the insurance. How-
ever, it is often simpler to refer to the floor of a dynamic fractional f 
strategy as simply the initial inactive equity of an account. 

We can state that Equation (8.04a) or (8.04b) equals the delta of the 
call option of the terms used in portfolio insurance. Further, we find that 
this delta changes much the way a call option that is deep out-of-the-
money and very far from expiration changes. Thus, by using a constant 
inactive dollar amount, trading an account on a dynamic fractional f 
strategy is equivalent to owning a put option on the portfolio that is deep 
in-the-money and very far out in time. Equivalently, we can state that 
trading a dynamic fractional f strategy is the same as owning a call op-
tion on the portfolio that doesn't expire for a very long time and is very 
far out-of-the-money, rather than the portfolio itself. This quality, this 
relationship to portfolio insurance, is true for any dynamic fractional f 
strategy, whether we are using share averaging, scenario planning, or 
investor utility. 

It is also possible to use portfolio insurance as a reallocation tech-
nique to "steer" performance somewhat. This steering may be analogous 
to trying to steer a tanker with a rowboat oar, but this is a valid realloca-
tion technique. The method involves setting parameters for the program 
initially. First you must determine a floor value. Once this has been 
chosen, you must decide upon an expiration date, a volatility level, and 
other input parameters for the particular option model you intend to use. 
These inputs will give you the options delta at any given point in time. 
Once the delta is known, you can determine what your active equity 
should be. Since the delta for the account, the variable H in Equation 
(8.04a), must equal the delta for the call option being replicated, D, we 
can replace H in Equation (8.04a) with D: 
D = f*A/E 

Therefore: 
(8.06) D/f = A/E if D < f (otherwise A/E = 1) 

where 
D = The hedge ratio of the call option being replicated. 
f = The f (0 to 1) from Equation (8.05). 
A = The active portion of funds in an account. 
E = The total equity of the account. 
Since A/E is equal to the percentage of active equity, we can state 

that the percentage of the total account equity funds that we should have 

in active equity is equal to the delta on the call option divided by the f 
determined in Equation (8.05). However, you will note that if D is 
greater than f, then it is suggesting that you allocate greater than 100% 
of an account's equity as active. Since this is not possible, there is an 
upper limit of 100% of the account's equity that can be used as active 
equity. You can use Equation (5.05) to find the delta of a call option on 
a stock, or Equation (5.08) to find the delta of a call option on a future. 

The problem with implementing portfolio insurance as a realloca-
tion technique, as detailed here, is that reallocation is taking place con-
stantly. This detracts from the fact that a dynamic fractional f strategy 
will asymptotically dominate a static fractional f strategy. As a result, 
trying to steer performance by way of portfolio insurance as a dynamic 
fractional f reallocation strategy probably isn't such a good idea. How-
ever, any time you use dynamic fractional f, you are employing portfolio 
insurance. 

We now cover an example of portfolio insurance. Recall our geo-
metric optimal portfolio of Toxico, Incubeast, and LA Garb. We found 
the geometric optimal portfolio to exist at V = .2457. We must now 
convert this portfolio variance into the volatility input for the option 
pricing model. Recall that this input is described as the annualized stan-
dard deviation. Equation (8.07) allows us to convert between the portfo-
lio variance and the volatility estimate for an option on the portfolio: 
(8.07) OV = (V^.5)*ACTV*YEARDAYS^.5 

where 
OV = The option volatility input for an option on the portfolio. 
V = The variance on the portfolio. 
ACTV = The current active equity portion of the account. 
YEARDAYS = The number of market days in a year. 
If we assume a year of 251 market days and an active equity per-

centage of 100% (1.00) for the sake of simplicity: 
OV = (.2457^.5)*1*251^.5 = .4956813493*15.84297952 = 
7.853069464 

This corresponds to a volatility of over 785%! Remember, this is the 
annualized volatility on the portfolio being traded at the optimal f level 
with 100% of the account designated as active equity. As a result, we 
are going to get very high volatility readings. Since we are going to 
demonstrate portfolio insurance as a reallocation technique, we must use 
1.00 as the value for ACTV. 

Equation (5.05) will give us the delta on a particular call option as: 
(5.05) Call Delta = N(H) 

The H term in (5.05) is given by (5.03) as: 
(5.03) H = ln(U/(E*EXP(-R*T)))/(V*T^(1/2))+(V*T^(l/2))/2 

U = The price of the underlying instrument. 
E = The exercise price of the option. 
T = Decimal fraction of the year to expiration. 
V = The annual volatility in percent. 
R = The risk-free rate. 
ln() = The natural logarithm function. 
N() = The cumulative Normal density function, as given in Equation 

(3.21). 
Notice that we are using the stock option pricing model here. We 

now use our answer for OV as the volatility input, V, in Equation (5.03). 
If we assume the risk-free rate, R, to be 6% and the decimal fraction of 
the year left till expiration, T, to be .25, Equation (5.03) yields: 
H = ln(100/(100*EXP(-
.06*.25)))/(7.853069464*.25^.5)+(7.853069464*.25^.5)/ 2  
= ln(100/(100*EXP(-.015)))/(7.853069464*.5)+(7.853069464*.5)/2  
= ln(100/(100*.9851119396))/(7.853069464*.5)+(7.853069464*.5)/2  
= ln( 100/98.51119396) ⁄ 3.926534732+3.926534732/2  
= ln( 1.015113065) ⁄ 3.926534732+1.963267366  
= .015 13.926534732+1.963267366  
= .00382+1.963267366  
= 1.967087528 

This answer represents the H portion of (5.05). We must now run 
this through Equation (3.21) as the Z variable to obtain the actual call 
delta: 
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(3.21) N(Z) = 1-N'(Z)*((1.330274429*Y^5)-
(1.821255978*Y^4)+(1.781477937*Y^3)-
(.356563782*Y^2)+(.31938153*Y)) 

where 
Y = 1/(1+.2316419*ABS(Z)) 
N'(Z) = .398942*EXP(-(Z^2/2)) 

Thus: 
Y = 1/ (1+.2316419*ABS(1.967087528))  
= 1/(1+ .4556598925)  
= 1/1.4556598925  
= .6869736574 

Now solving for the term N'( 1.967087528) 
N'(1.967087528) = .398942*EXP(-(1.967087528 ^ 2/2))  
= .398942*EXP(-(3.869433343/2))  
= .398942*EXP(-1.934716672)  
= .398942*.1444651941  
= .05763323346 

Now, plugging the values for Y and N' (1.967087528) into (3.21) to 
obtain the actual call delta as given by Equation (5.05): 
N(Z) = 1-.05763323346*((1.330274429*.6869736574^5)-
(1.821255978*.6869736574^4)+(1.781477937*.6869736574^3)-
(.356563782*.6869736574^2)+(.31938153*.6869736574))  
= 1-.05763323346*((1.330274429*.1530031)-
(1.821255978*.2227205)+(1.781477937*.3242054)-
(.356563782*.4719328)+(.31938153*.6869736))  
= 1-.05763323346*(.2035361115-.405631042+-5775647672-
.168274144+.2194066794)  
= 1-.05763323346*.4266023721  
= 1-.02458647411  
= .9754135259 

Thus, we have a delta of .9754135259 on our hypothetical call op-
tion for a portfolio trading at a price of 100%, with a strike price of 
100%, with .25 of a year left to expiration, a risk-free rate of 6%, and a 
volatility on this portfolio of 785.3069464%. 

Now recall that the sum of the weights on this geometric optimal 
portfolio consisting of Toxico, Incubeast, and LA Garb, per Equation 
(8.05), is 1.9185357. Thus, per Equation (8.06), we would reallocate to 
50.84156244% (.9754135259/1.9185357) active equity if we were using 
portfolio insurance to reallocate. 

"What is the cost of this insurance?" That depends upon the volatil-
ity that will actually be seen over the life of the replicated option. For 
instance, if the equity in the account were not to fluctuate at all over the 
life of the replicated option (volatility equal to 0), the replicated option, 
the insurance, would cost us nothing. This is a great benefit to portfolio 
insurance versus outright buying a put option (assuming one was avail-
able on our portfolio). We pay the actual theoretical price of the option 
for the volatility actually encountered, not the volatility perceived by the 
marketplace before the fact, as would be the case with actually buying 
the put option. Further, actually buying the put option (again assuming 
one was available) entails a bid-ask spread that is circumvented by rep-
licating the option. 

THE MARGIN CONSTRAINT 
Here is a problem that continuously crops up when we take any of 

the fixed fractional trading techniques out of its theoretical context and 
apply it in the real world. We have seen that anytime an additional mar-
ket system is added to the portfolio, so long as the linear correlation 
coefficient of daily equity changes between that market system and 
another market system in the portfolio is less than +1, the portfolio is 
improved. That is to say that the geometric mean of daily HPRs is in-
creased. Thus, it stands to reason that you would want to have as many 
market systems as possible in a portfolio. Naturally, at some point, mar-
gin considerations become a problem. 

Even if you are trading only 1 market system, margin considerations 
can often be a problem. Consider that the optimal fin dollars is very 
often less than the initial margin requirements for a given market. Now, 
depending on what fraction of f you are using at the moment, whether 

you are using a static or dynamic fractional f strategy, you will encoun-
ter a margin call if the fraction is too high. 

When you trade a portfolio of market systems, the problem of a 
margin call becomes even more likely. With an unconstrained portfolio, 
the sum of the weights is often considerably greater than 1. When you 
trade only 1 market system, the weight is, de facto, 1. If the sum of the 
weights of a market system you are trading is, say, 3, then the likelihood 
of a margin call is 3 times as great as it would be if you were trading just 
1 market. 

What is needed is a way to reconcile how to create an optimal port-
folio within the bounds of the margin requirements on the components 
in the portfolio. This can very easily be found. The way to accomplish 
this is to find what fraction off you can use as an upper limit. This up-
per limit, U, is given by Equation (8.08) as: 
(8.08) U = ∑[i = 1,N]fi$/((∑[i = 1,N] margini$)*N) 

where 
U = The upside fraction of Ј At this particular fraction off you are 

trading the optimal portfolio as aggressively as possible without incur-
ring an initial margin call. 

fi$ = The optimal fs in dollars for the ith market system. 
margini$ = The initial margin requirement of the ith market system. 
N = The total number of market systems in the portfolio. 
If U is greater than 1, then use 1 as the answer for U. For instance, 

suppose we have a portfolio with the three market systems as follows, 
with the following optimal fs in dollars for the three market systems and 
the following initial margin requirements. (Note: the f$ are the optimal 
fs in dollars for each market system in the portfolio. This represents the 
market system's individual optimal f$ divided by its weighting in the 
portfolio): 
Market System f$  Initial Margin  
A  $2,500  $2,000  
B  $2,000  $2,000  
C  $3,000  $2,000  
Sums $7,500  $6,000  

Now, per Equation (8.08) we use the sum of the f$ column in the 
numerator, which is $7,500, and divide by the sum of the initial margin 
requirements, $6,000, times the number of markets, N, which is 3: 
U = $7,500/($6,000*3) = 7500/18,000 = .4167 

Therefore, we can determine that, as an upside limit, our fraction off 
cannot exceed 41.67% in this case (that is, if we are employing a dy-
namic fractional f strategy). Therefore, we must reallocate when our 
active equity divided by our total equity in the account equals or ex-
ceeds .4167. 

If, however, you are still employing a static fractional f strategy (de-
spite my protestations), then the highest you should set that fraction to is 
.4167. This will put you on the unconstrained geometric efficient fron-
tier, to the left of the optimal portfolio, but as far to the right as possible 
without encountering a margin call. 

To see this, suppose we have a $100,000 account. We set our frac-
tional f values to a .4167 fraction of optimal. Therefore for each market 
system: 
Market System f$  1.4167 = New f$  
A  $2,500  $6,000  
B  $2,000  $4,600  
C  $3,000  $7,200  

For a $100,000 account, we will trade 16 contracts of market system 
A (100,000/6,000), 20 contracts of market system B (100,000/4,800), 
and 13 contracts of market system C (100,000/7,200). The resulting 
margin requirement for such a portfolio is: 
16*$2,000 = $32,000 20*2,000 = 40,000 13*2,000 = 26,000 

Initial margin requirement $96,000 
Notice that using this formula (8.08) yields the highest fraction for f 

(without incurring an initial margin call) that gives you the same ratios 
of the different market systems to one another. Hence, Equation (8.08) 
returns the unconstrained optimal portfolio at its least diluted state with-
out incurring an initial margin call. 

Notice in the previously cited example that if you are trading a frac-
tional f strategy, the value returned from Equation (8.08) is the maxi-
mum fraction for f you can get to without incurring an initial margin 
call. Again consider a $100,000 account. Assume that at one time, when 
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you opened this account, it had $70,000 in it. Further assume that of that 
initial $70,000 you allocated $58,330 as inactive equity. Thus, you ini-
tially started out at a roughly 83:17 percentage split between inactive 
and active equity. You have traded the active portion at the full optimal 
f values. Now your account stands at $100,000. You still have $58,330 
as inactive equity, therefore your active equity is $41,670, which is 
.4167 of your total equity. This should now be the maximum fraction 
you can use, the maximum ratio of active to total equity, without incur-
ring a margin call. Recall that you are trading at the full f levels. There-
fore, you will trade 16 contracts of market system A (41,670/2,500), 20 
contracts of market system B (41,670/2,000), and 13 contracts of market 
system C (41,670/3,000). The resultant margin requirement for such a 
portfolio is: 
16*$2,000 = $32,000 20*2,000 = 40,000 13* 2,000 = 26,000 

Initial margin requirement $96,000 
Again we can see that this is pushing it as much as possible without 

incurring a margin call, since we have $100,000 total equity in the ac-
count. 

Recall from Chapter 2 the fact that adding more and more market 
systems results in higher and higher geometric means for the portfolio as 
a whole. However, there is a tradeoff in that each market system adds 
marginally less benefit to the geometric mean, but marginally more 
detriment in the way of efficiency loss due to simultaneous rather than 
sequential outcomes. Therefore, you do not want to trade an infinite 
number of market systems. What's more, theoretically optimal portfolios 
run into the real-life application problem of margin constraints. In other 
words, you are better off to trade 3 market systems at the full optimal f 
levels than to trade 300 market systems at dramatically reduced levels as 
a result of Equation (8.08). Usually, you will find that the optimal num-
ber of market systems to trade in, particularly when you have many 
orders to place and the potential for mistakes, is but a handful. 

If one or more market systems in the portfolio have optimal weight-
ings greater than 1, a potential problem emerges. For example, assume a 
market system with an optimal f of .8 and a biggest loss of $4,000. 
Therefore, f$ is $5,000. Let's suppose the optimal weighting for this 
component of the portfolio is 1.25. Therefore you will trade one unit of 
this component for every $4,000 ($5,000/1.25) in account equity. As 
you can see, as soon as the component sees its largest loss, all of the 
active equity in the account will be wiped out (unless profits are suffi-
cient in the other market systems to salvage some active equity). 

This problem tends to crop up for systems that trade infrequently. 
For example, recall that if we could have two market systems with per-
fect negative correlation and a positive expectation, we would optimally 
have on an infinite number of contracts. When one of the components 
lost, the other would win an equal or greater amount. Thus, we would 
always have a net profit on each play. However, these market systems 
are always having a simultaneous play. The situation being discussed is 
analogous to this hypothetical situation when one of these components 
is not active on a certain play. Now there's only one market system ac-
tive on a given play, and that market system has on an infinite number 
of contracts. A loss is catastrophic. 

The solution is to divide 1 by the highest weighting of any of the 
components in the portfolio and use the answer as the upper limit on 
active equity if the answer is less than the answer to Equation (8.08). 
This ensures that if a loss is encountered in the future of the same mag-
nitude as the largest loss over which f was derived, it will not wipe out 
the account. For example, suppose the highest weighting of any compo-
nent in our portfolio is 1.25. Then if Equation (8.08) does not give us an 
answer less than .8 (1/1.25), we will use .8 as our upper limit on our 
active equity percentage. 

This is unlikely to be a problem if you start with a low active equity 
percentage. However, a more aggressive trader may encounter this prob-
lem. An alternative solution is to set additional constraints in the portfo-
lio matrix (such as constraints on the maximum weighting for each mar-
ket system being set to 1, as well as constraints pertaining to margin). 
These additional linear programming constraints may be slightly benefi-
cial to the aggressive trader, but the matrix solutions can be involved. 
Interested readers are again referred to Childress. 

ROTATING MARKETS 
Many traders use systems or techniques that have them monitoring 

many markets all the time, filtering for what they feel are the best mar-

kets for the systems at the moment. For example, some traders may 
prefer to monitor the volatility in all of the futures markets and trade 
only those markets whose volatility exceeds a certain amount. Some-
times they will be in many markets, sometimes they won't be in any. 
Further, the markets that they are in are constantly changing. This 
changing composition seems to be particularly a problem for stock fund 
managers. How can we manage such a thing and still be at the optimal 
portfolio? 

The solution is really quite simple. Anytime a market is added or 
deleted from the portfolio, the new unconstrained geometric optimal 
portfolio is calculated as detailed in this chapter. Any adjustments to 
existing positions in terms of the quantity that should be on in light of 
the newly added or deleted market system ought to be made as well. 

In a nutshell, it is alright to have a constantly changing portfolio in 
terms of components. The goal for the manager of such a portfolio, 
however, is to have the portfolio always be the unconstrained geometric 
optimal of the components involved and to keep the inactive equity 
amount constant. In so doing, a constantly changing portfolio composi-
tion can be managed in a manner that is asymptotically optimal. 

There is a potential problem with this type of trading from a portfo-
lio standpoint. An example may help illustrate. Imagine two highly cor-
related markets, such as gold and silver. Now imagine that your system 
trades so infrequently that you have never had a position in both of these 
markets on the same day. When you determine the correlation coeffi-
cients of the daily equity changes, it is quite possible that the correlation 
coefficient you will show between gold and silver is 0. However, if in 
the future you have a trade in both markets simultaneously, you can 
expect them to have a high positive correlation. 

To solve this problem, it is helpful to edit your correlation coeffi-
cients with an eye toward this type of situation. In short, don't be afraid 
to edit the correlation coefficients upward. However, be wary of moving 
them lower. Suppose you show the correlation coefficient between 
Bonds and Soybeans as 0, but you feel it should be lower, say -.25. You 
really should not adjust correlation coefficients lower, as lower correla-
tion coefficients tend to have you increase position size. In short, if 
you're going to err in the correlation coefficients, err by moving them 
upward rather than downward. Moving them upward will tend to move 
the portfolio to the left of the peak of the portfolio's f curve, while mov-
ing correlation coefficients lower will tend to move you to the right of 
the portfolio's f curve. 

Often people try to filter trades in a manner as to have them in a par-
ticular market during certain times and out at others in an attempt to 
lower drawdown. If the filtering technique works, if it lowers drawdown 
on a one-unit basis, then the f that is optimal for the filtered trades will 
be higher (and f$ lower) than for the entire series of trades before filter-
ing. If the trader applies the optimal f over the entire prefiltered series to 
the postfiltered series, she will find herself at a fractional f on the post-
filtered series and hence cannot be obtaining a geometric optimal portfo-
lio. On the other hand, if the trader applies the optimal f on the postfil-
tered series, she can obtain the geometric optimal portfolio, but she is 
right back to the problem of impending large drawdowns at optimal f. 
She seems to have defeated the purpose of her filter. 

This illustrates the fallacy of filters from a money-management 
standpoint. Filters might work (reduce drawdown on a one-unit basis) 
only because they cause the trader to be at a fraction of the optimal f. 

Why filter at all? We could state that we benefit by filtering if our 
answer to the fundamental equation of trading on postfiltered trades at 
the prefiltered optimal f is greater than the answer to the fundamental 
equation of trading on prefiltered trades at the prefiltered optimal f. It is 
important to note when making such a comparison that the postfiltered 
trades are less in number (have lower N) than the prefiltered trades. 

TO SUMMARIZE 
We have seen that trading on a fixed fractional basis makes the most 

money in an asymptotic sense. It maximizes the ratio of potential gain to 
potential loss. Once we have an optimal f value we can convert our daily 
equity changes on a 1-unit basis to an HPR, we can determine the arith-
metic average HPR and standard deviation in those HPRs, and we can 
calculate the correlation coefficient of the HPRs between any two mar-
ket systems, We can then use these parameters as inputs in determining 
the optimal weightings for an optimal portfolio. (Since we are using 
leveraged vehicles, weighting and quantity are not synonymous, as they 



- 98 - 

would be if there was no leverage involved.) These weightings then are 
reflected back into the f values, the amount we should finance each con-
tract by, as the f values are divided by their respective weightings. This 
gives us new f values, which result in the greatest geometric growth 
with respect to the intercorrelations of the other market systems and 
their weightings. 

The greatest geometric growth is obtained by using that set of 
weightings whose sum is unconstrained and whose arithmetic average 
HPR minus its standard deviation in HPRs squared (its variance) equals 
1 [Equation (7.06c)]. Rather than being diluted (which only puts you 
farther left on the unconstrained efficient frontier), as is the case with a 
static fractional f strategy, this portfolio is traded full out with only a 
fraction of the funds in the account. Such a technique is called a dy-
namic fractional f strategy. The remaining funds, the inactive equity, 
are left untouched by the activity that goes on in these active funds. 

Since this active portion is being traded at the optimal levels, fluc-
tuations in this active equity will be swift. As a result, at some point on 
the upside or downside in the equity fluctuations, or at some point in 
time, you will likely find it necessary, even if only from an emotional 
standpoint, to reallocate funds between the active and inactive portions. 
Four methods of doing so have been explained, although other, possibly 
better, methods may exist: 
1. Investor Utility. 
2. Scenario Planning. 
3. Share Averaging. 
4. Portfolio Insurance. 

The fourth method, portfolio insurance or dynamic hedging, is in-
herent in any dynamic fractional f strategy, but it can also be utilized as 
a reallocation method. 

We have further seen that to take the unconstrained geometric opti-
mal portfolio and apply it in real time will most likely encounter a prob-
lem in terms of the initial margin requirements. This problem can be 
alleviated by determining an upper level limit for the ratio of active 
equity to total account equity. 

APPLICATION TO STOCK TRADING 
The techniques that have been described in this book apply not only 

to futures traders, but to traders in any market. Even someone trading a 
portfolio of only blue chip stocks is not immune from the principles and 
the consequences discussed in this book. You have seen that such a 
portfolio of blue chip stocks has an optimal level of leverage where the 
ratio of potential gains to potential losses in equity are maximized. At 
such a level, the drawdowns to be expected arc also quite severe, and 
therefore the portfolio ought to be diluted, preferably by way of a dy-
namic fractional f strategy. 

The entire procedure can be performed exactly as though the stock 
being traded were a commodity market system. For instance, suppose 
Toxico were trading at $40 per share. The cost of 100 shares of Toxico 
would be $4,000. This 100-share block of Toxico can be treated as 1 
contract of the Toxico market system. Thus, if we were operating in a 
cash account, we could replace the margini$ variable in Equation (8.08) 
with the value of 100 shares of Toxico ($4,000 in this example). In so 
doing, we can determine the upper limit on the fraction of f to use such 
that we never have to even perform the procedure in a margin account. 
When you are doing this type of exercise, remember that you are repli-
cating a leveraged situation, but there isn't really any borrowing or lend-
ing going on. Therefore, you should use an RFR of 0 in any calculations 
(such as the Sharpe ratio) that require an RFR. 

On the other hand, if we perform the procedure in a margin account, 
and if initial margin levels are, say, 50%, then we would use a value of 
$2,000 for the margini$ variable for Toxico in (8.08). 

Traditionally, stock fund managers have used portfolios where the 
sum of the weights is constrained to 1. Then they opt for that portfolio 
composition which gives the lowest variance for a given level of arith-
metic return. The resultant portfolio composition is expressed in the 
form of the weights, or percentages of the trading account, to apply to 
each component of the portfolio. 

By lifting this sum of the weights constraint and opting for the sin-
gle portfolio that is geometric optimal, we get the optimal leveraged 
portfolio. Here, the weights and quantities are completely different. We 

now divide the optimal amount to finance I unit of each component by 
its respective weighting; the result is the optimal leverage for each com-
ponent in the portfolio. Now, we can dilute this portfolio down by mar-
rying it to the risk-free asset. We can dilute the portfolio to the point 
where there really isn't any leverage involved. That is, we are leveraging 
the active equity portion of the portfolio but the active equity portion is 
actually borrowing its own money, interest-free, from the inactive equity 
portion. The result is a portfolio and a method of adding to and trim-
ming back from positions as the equity in the account changes that will 
result in the greatest geometric growth. As such a method maximizes the 
potential geometric growth to the potential loss and allows for the 
maximum loss acceptable to be essentially specified at the outset, it can 
also be argued to be a superior means of managing a stock portfolio. 

The current generally accepted procedure for determining the effi-
cient frontier will not really yield the efficient frontier, much less the 
portfolio that is geometric optimal (the geometric optimal portfolio al-
ways lies on the efficient frontier). This can be derived only by incorpo-
rating the optimal f. Further, the generally accepted procedure yields a 
portfolio that gets traded on a static f basis rather than on a dynamic 
basis, the latter being asymptotically infinitely more powerful. 

A CLOSING COMMENT 
This is a very exciting time to be in this field, New concepts have 

been emerging nearly continuously since the mid 1950s. We have wit-
nessed an avalanche of great ideas from the academic community build-
ing upon the E-V model. Among the ideas presented has been the E-S 
model. With the E-S model the measure of risk is semivariance in lieu 
of variance.1 Semivariance is defined as the variation beneath some 
target level of return, which could be the expected return, zero return, or 
any other fixed level of return. When this target level of return equals 
the expected return and the distribution of returns is symmetrical (with-
out skew), the E-S efficient frontier is the same as the E-V efficient 
frontier. 

Other portfolio models have been presented using other measures 
for risk than variance in returns. Still other portfolio models have been 
presented using moments of the distribution of returns beyond the first 
two moments. Of particular interest in this regard have been the sto-
chastic dominance approaches, which encompass the entire distribution 
of returns and hence can be considered the limiting case of multidimen-
sional portfolio analysis as the number of moments incorporated ap-
proaches infinity.2 This approach may be particularly useful when the 
variance in returns is infinite or undefined. 

Again, I am not a so-called academic. This is neither a boast nor an 
apology. I am no more an academic than I am a ventriloquist or a TV 
wrestler. Academics want a model to explain how the markets work. As 
a nonacademic, I don't care how they work. For example, many people 
in the academic community argue that the efficient market hypothesis is 
flawed because there is no such thing as a rational investor. They argue 
that people do not behave rationally, and therefore conventional portfo-
lio models, such as E-V theory (and its offshoots) and the Capital Asset 
Pricing model, are poor models of how the markets operate. While I 
agree that people certainly do not behave rationally, it does not mean 
that we shouldn't behave rationally or that we cannot benefit by behav-
ing rationally. When variance in returns is finite, we can certainly bene-
fit by being on the efficient frontier. 

There has been much debate in recent years over the usefulness of 
current portfolio models in light of the fact that the distribution of the 
logs of price changes appear to be stable Paretian with infinite (or unde-
fined) variance. Yet many studies demonstrate that the markets in recent 
years have seen a move toward Normality (therefore finite variance) and 
independence, which the portfolio models being criticized assume.3 

                                                                 
1 Markowitz, Harry, Portfolio Selection: Efficient Diversification of Investments. 
New York: John Wiley, 1959. 
2 See Quirk, J, P., and R. Saposnik, "Admissibility and Measurable Utility Func-
tions," Review of Economic Studies, 29(79):140-146, February 1962. Also see 
Reilly, Frank K, Investment Analysis and Portfolio Management. Hinsdale, IL: 
The Dryden Press, 1979. 
3 See Helms, Billy P., and Terrence F. Martell, "An Examination of the Distribu-
tion of Commodity Price Changes," Working Paper Series. New York: Columbia 
University Center for the Study of Futures Markets, CFSM-76, April 1984. Also 
see Hudson, Michael A., Raymond M. Leuthold, and Cboroton F. Sarassorro, 
"Commodity Futures Price Changes: Distribution, Market Efficiency, and Pricing 



- 99 - 

Further, the portfolio models use the distribution of returns as input, not 
the distribution of the logs of price changes. Whereas the distribution of 
returns is a transformed distribution of the logs of price changes (trans-
formed by techniques such as cutting losses short and letting profits 
run), they are not necessarily the same distribution, and the distribution 
of returns may not be a member of the stable Paretian (which is why we 
modeled the distribution of trade P&L's in Chapter 4 with our adjustable 
distribution). Furthermore, there are derivative products such as options 
that have finite semivariance (if long) or finite variance altogether. For 
example, a vertical option spread put on at a debit guarantees finite vari-
ance in returns. 

I'm not defending against the attacks on the current portfolio mod-
els. Rather, I am playing devil's advocate here. The current portfolio 
models can be employed provided we are aware of their shortcomings. 
We no doubt need better portfolio models. It is not my contention that 
the current portfolio models are adequate. Rather, it is my contention 
that the input to the portfolio models, current and future for whatever 
portfolio models we use, should be based on trading one unit at the op-
timal level-or what we believe will be the optimal level for that item in 
the future, as though we were trading only that item. For example, if we 
are employing E-V theory, the Markowitz model, the inputs are the 
expected return, variance in returns, and correlation of returns to other 
market systems. These inputs must be determined from trading one unit 
on each market system at the optimal f level. Portfolio models other than 
E-V may require different input parameters. These parameters must be 
discerned based on trading one unit of the market systems at their opti-
mal f levels. 

Portfolio models are but one facet of money management, but they 
are a facet where debate is certain to rage for quite some time. This book 
could not be definitive in that regard, as newer, better models are yet to 
be formulated. We most likely will never have a model we all agree 
upon as being adequate. That should make for a healthy and stimulating 
environment. 

                                                                                                                     
Commodity Options," Working Paper Series, New York: Columbia University 
Center for the Study of Futures Markets, CFSM-127, June 1986. 
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APPENDIX A - The Chi-Square Test 
There exist a number of statistical tests designed to determine if two 

samples come from the same population. Essentially, we want to know 
if two distributions are different. Perhaps the most well known of these 
tests is the chi-square test, devised by Karl Pearson around 1900. It is 
perhaps the most popular of all statistical tests used to determine 
whether two distributions are different. 

The chi-square statistic, X2, is computed as: 
(A.01) X2 =>[i = 1,N](Oi-Ei)^2/Ei 

where 
N = The total number of bins. 
Oi = The number of events observed in the ith bin. 
Ei = The number of events expected in the ith bin. 
A large value for the chi-square statistic indicates that it is unlikely 

that the two distributions are the same (i.e., the two samples are not 
drawn from the same population). Likewise, the smaller the value for 
the chi-square statistic, the more likely it is that the two distributions are 
the same (i.e., the two samples were drawn from the same population). 

Note that the observed values, the Oi's, will always be integers. 
However, the expected values, the Ei's, can be nonintegers. Equation 
(A.01) gives the &i-square statistic when both the expected and ob-
served values are integers. When the expected values, the Ei's, are per-
mitted to be nonintegers, we must use a different equation, known as 
Yates' correction, to find the chi-square statistic: 
(A.02) X2 = ∑[i = 1,N] (ABS(Oi-Ei)-.5)^2/Ei 

where 
N = The total number of bins. 
Oi = The number of events observed in the ith bin. 
Ei = The number of events expected in the ith bin. 
ABS()-The absolute value function. 
If we are comparing the number of events observed in a bin to what 

the Normal Distribution dictates should be in that bin, we must employ 
Yates' correction. That is because the number of events expected,1 the 
Ei's, are nonintegers. 

We now work through an example of the chi-square statistic for the 
data corresponding to Figure 3-16. This is the 232 trades, converted to 
standard units, placed in 10 bins from -2 to +2 sigma, and plotted versus 
what the data would be if it were Normally distributed. Note that we 
must use Yates' correction: 
Bin# Observed Expected ((ABS(O-E)-.5)^2)/E 
1  7.435423 4.738029 
2 17 13.98273 .4531787 
3 25 22.45426 .1863813 
4 27 30.79172 .3518931 
5 38 36.05795 .05767105 
6 61 36.078 16.56843 
7 37 30.7917 1.058229 
8 12 22.45426 4.41285 
9 4 13.98273 6.430941 
10 2 7.435423 3.275994 
   X2=37.5336 

We can convert a chi-square statistic such as 37.5336 to a signifi-
cance level. In the sense we are using here, a significance level is a 
number between 0, representing that the two distributions are different, 
and 1, meaning that the two distributions are the same. We can never be 
100% certain that two distributions are the same (or different), but we 
can determine how alike or different two distributions are to a certain 
significance level. There are two ways in which we can find the signifi-
cance level. This first and by far the simplest way is by using tables. The 
second way to convert a chi-square statistic to a significance level is to 
perform the math yourself (which is how the tables were drawn up in the 
first place). However, the math requires the use of incomplete gamma 
functions, which, as was mentioned in the Introduction, will not be 
treated in this text. Interested readers are referred to the Bibliography, in 
particular to Numerical Recipes. However, most readers who would 

                                                                 
1 As detailed in Chapter 3, this is determined by the Normal Distribution per 
Equation (3.21) for each boundary of the bin, taking the absolute value of the 
differences, and multiplying by the total number of events. 

want to know how to calculate a significance level from a given chi-
square statistic would want to know this because tables are rather awk-
ward to use from a programming standpoint. Therefore, what follows is 
a snippet of BASIC language code to convert from a given chi-square 
statistic to a significance level. 
1000 REM INPUT NOBINS%, THE NUMBER OF BINS AND 
CHISQ, THE CHI-SQUARE STATISTIC 
1010 REM OUTPUT IS CONF, THE CONFIDENCE LEVEL FOR A 
GIVEN NOBINS% AND CHISQ 
1020 PRINT "CHI SQUARE STATISTIC AT"NOBINS%- 
3"DEGREES FREEDOM IS"CHISQ 
1030 REM HERE WE CONVERT FROM A GIVEN CHISQR TO A 
SIGNIFICANCE LEVEL, CONF 
1040 XI = 0:X2 = 0:X3# = 0:X4 = 0:X5 = 0:X6 = 0:CONF = 0 
1050 IF CHISQ < 31 OR (NOBINS%-3) > 2 THEN X6 =  
(NOBINS%-3)/2-1 :X1 = 1 ELSE CONF = 1 :GOTO 1110 
1060 FOR X2 = 1 TO ((NOBINS%-3)/2-.5):X1 = XI*X6:X6 = X6-1: 
NEXT 
1070 IF (NOBINS%-3) MOD 2 <> 0 THEN X1 = X 
1*1.77245374942627# 
1080 X7 = 1:X4 = 1:X3# = ((CHISQ/2)*((NOBINS%-
3)/2))*2/(EXP(CHISQ/2) 
* XI*(NOBINS%-3)):X5 = NOBINS% -3+2 
1090 X4 = X4*CHISQ/X5:X7 = X7+X4:X5 = X5+2:IF X4> 0 THEN 
1090 
1100 CONF = 1-X3#*X7 
1110 PRINT "FOR A SIGNIFICANCE LEVEL OF 
";USING".#########";CONF 

Whether you determine your significance levels via a table or calcu-
late them yourself, you will need two parameters to determine a signifi-
cance level. The first of these parameters is, of course, the chi-square 
statistic itself. The second is the number of degrees of freedom Gener-
ally, the number of degrees of freedom is equal to the number of bins 
minus 1 minus the number of population parameters that have to be 
estimated for the sample statistics. Since there are ten bins in our exam-
ple and we must use the arithmetic mean and standard deviation of the 
sample to construct the Normal curve, we must therefore subtract 3 
degrees of freedom. Hence, we have 7 degrees of freedom. 

The significance level of a chi-square statistic of 37.5336 at 7 de-
grees of freedom is .000002419, Since this significance level is so much 
closer to zero than one, we can safely assume that our 232 trades from 
Chapter 3 are not Normally distributed. What follows is a small table for 
converting between chi-square values and degrees of freedom to signifi-
cance levels. More elaborate tables may be found in many of the statis-
tics books mentioned in the Bibliography: 
VALUES OF X2 
Degrees of 
Freedom 

Significance Level 

 .20 .10 .05 .01 
1 1.6 2.7 3.8 6.6 
2 3.2 4.6 6.0 9.2 
3 4.6 6.3 7.8 11.3 
4 6.0 7.8 9.5 13.3 
5 7.3 9.2 11.1 15.1 
10 13.4 16.0 18.3 23.2 
20 25.0 28.4 31.4 37.6 

You should be aware that the chi-square test can do a lot more than 
is presented here. For instance, you can use the chi-square test on a 2 x 2 
contingency table (actually on any N x M contingency table). If you are 
interested in learning more about the chi-square test on such a table, 
consult one of the statistics books mentioned in the Bibliography. 

Finally, there is the problem of the arbitrary way we have chosen 
our bins as regards both their number and their range. Recall that 
binning data involves a certain loss of information about that data, but 
generally the profile of the distribution remains relatively the same. If 
we choose to work with only 3 bins, or if we choose to work with 30, 
we will likely get somewhat different results. It is often a helpful exer-
cise to bin your data in several different ways when conducting statisti-
cal tests that rely on binned data. In so doing, you can be rather certain 
that the results obtained were not due solely to the arbitrary nature of 
how you chose your bins. 

In a purely statistical sense, in order for our number of degrees of 
freedom to be valid, it is necessary that the number of elements in each 
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of the expected bins, the Ei's, be at least five. When there is a bin with 
less than five expected elements in it, theoretically the number of bins 
should be reduced until all of the bins have at least five expected ele-

ments in them. Often, when only the lowest and/or highest bin has less 
than 5 expected elements in it, the adjustment can be made by making 
these groups "all less than" and "all greater than" respectively. 

APPENDIX B - Other Common Distribu-
tions 

This appendix covers many of the other common distributions aside 
from the Normal. This text has shown how to find the optimal f and its 
by-products on any distribution. We have seen in Chapter 3 how to find 
the optimal f and its by-products on the Normal distribution. We can use 
the same technique to find the optimal f on any other distribution where 
the cumulative density function is known. 

It matters not whether the distribution is continuous or discrete. 
When the distribution is discrete, the equally spaced data points are 
simply the discrete points along the cumulative density curve itself. 
When the distribution is continuous, we must contrive these equally 
spaced data points as we did with the Normal Distribution in Chapter 3. 

Further, it matters not whether the tails of the distribution go out to 
plus and minus infinity or are bounded at some finite number. When the 
tails go to plus and minus infinity we must determine the bounding pa-
rameters (i.e., how far to the left extreme and right extreme we are going 
to operate on the distribution). The farther out we go, the more accurate 
our results. If the distribution is bounded on its tails at some finite point 
already, then these points become the bounding parameters. 

Finally, in Chapter 4 we learned a technique to find the optimal f 
and its by-products for the area under any curve (not necessarily just our 
adjustable distribution) when we do not know the cumulative density 
function, so we can find the optimal f and it's by products for any proc-
ess regardless of the distribution. The hardest part is determining what 
the distribution in question is for a particular process, what the cumula-
tive density function is for that process, and what parameter value(s) are 
best for our application. 

One of the many hearts of this book is the broader concept of deci-
sion making in environments characterized by geometric consequences. 
Optimal f is the regulator of growth in such environments, and the by-
products of optimal f tell us a great deal about the growth rate of a given 
environment. You may seek to apply the tools for finding the optimal f 
parametrically to other fields where there are such environments. For 
this reason this appendix has been included. 

THE UNIFORM DISTRIBUTION 
The Uniform Distribution, sometimes referred to as the Rectangu-

lar Distribution from its shape, occurs when all items in a population 
have equal frequency. A good example is the 10 digits 0 through 9. If 
we were to randomly select one of these digits, each possible selection 
has an equal chance of occurrence. Thus, the Uniform Distribution is 
used to model truly random events. A particular type of uniform distri-
bution where A = 0 and B = 1 is called the Standard Uniform Distribu-
tion, and it is used extensively in generating random numbers. 

The Uniform Distribution is a continuous distribution. The prob-
ability density function, N'(X), is described as: 
(B.01) N'(X) = 1/(B-A) for A<= X<= B else N'(X) = 0 

where 
B = The rightmost limit of the interval AB. 
A = The leftmost limit of the interval AB. 
The cumulative density of the Uniform is given by: 

(B.02) N(X) = 0 for X<A else N(X) = (X-A)/(B-A) for A <= X<= B else 
N(X) = 1 for X>B 

where 
B = The rightmost limit of the interval AB. 
A = The leftmost limit of the interval AB. 
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Figure B-1 Probability density functions for the Uniform Distribution 
(A = 2, B = 7). 
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Figure B-2 Cumulative probability functions for the Uniform Distribu-
tion (A = 2, B = 7). 

Figures B-1 and B-2 illustrate the probability density and cumula-
tive probability (i.e., cdf) respectively of the Uniform Distribution. 
Other qualities of the Uniform Distribution are: 
(B.03) Mean = (A+B)/2  
(B.04) Variance = (B-A)^2/12 

where 
B = The rightmost limit of the interval AB. 
A = The leftmost limit of the interval AB. 

THE BERNOULI DISTRIBUTION 
Another simple, common distribution is the Bernoulli Distribution. 

This is the distribution when the random variable can have only two 
possible values. Examples of this are heads and tails, defective and non-
defective articles, success or failure, hit or miss, and so on. Hence, we 
say that the Bernoulli Distribution is a discrete distribution (as opposed 
to being a continuous distribution). The distribution is completely de-
scribed by one parameter, P, which is the probability of the first event 
occurring. The variance in the Bernoulli is: 
(B.05) Variance = P*Q 

where 
(B.06) Q = P-1 



- 102 - 

1

0.8

0.6

0.4

0.2

0
0 1

 
Figure B-3 Probability density functions for the Bernoulli Distribution 
(P = .5). 
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Figure B-4 Cumulative probability functions for the Bernoulli Distribu-
tion (P = .5). 

Figures B-3 and B-4 illustrate the probability density and cumula-
tive probability (i.e., cdf) respectively of the Bernoulli Distribution. 

THE BINOMIAL DISTRIBUTION 
The Binomial Distribution arises naturally when sampling from a 

Bernoulli Distribution. The probability density function, N'(X), of the 
Binomial (the probability of X successes in N trials or X defects in N 
items or X heads in N coin tosses, etc.) is: 
(B.07) N'(X) = (N!/(X!*(N-X)!))*(P^X)*(Q^(N-X)) 

where 
N = The number of trials. 
X = The number of successes. 
P = The probability of a success on a single trial. 
Q = 1-P. 
It should be noted here that the exclamation point after a variable 

denotes the factorial function: 
(B.08a) X! = X*(X-l)*(X-2)*...*1 

which can be also written as: 
(B.08b) X! = ∏[J = 0,X-1]X-J 

Further, by convention: (B.08c) 0! = 1 
The cumulative density function for the Binomial is:  

(B.09) N(X) = ∑[J = 0,X] (N!/(J!*(N-J)!))*(P^J)*(Q^(N -J)) 
where 
N = The number of trials. 
X = The number of successes. 
P = The probability of a success on a single trial. 
Q = 1-P. 
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Figure B-5 Probability density functions for the Binomial Distribution 
(N = 5, P = .5). 
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Figure B-6 Cumulative probability functions for the Binomial Distribu-
tion (N = 5, P = .5). 

 
Figures B-5 and B-6 illustrate the probability density and cumula-

tive probability (i.e., cdf) respectively of the Binomial Distribution. 
The Binomial is also a discrete distribution. Other properties of the 

Binomial Distribution are: 
(B.10) Mean = N*P 
(B.11) Variance = N*P*Q where N = The number of trials. 

P = The probability of a success on a single trial. Q = 1-P. 
As N becomes large, the Binomial tends to the Normal Distribution, 

with the Normal being the limiting form of the Binomial. Generally, if 
N*P and N*Q are both greater than 5, you could use the Normal in lieu 
of the Binomial as an approximation. 

The Binomial Distribution is often used to Statistically validate a 
gambling system. An example will illustrate. Suppose we have a gam-
bling system that has won 51% Of the time. We want to determine what 
the winning percentage would be if it performs in the future at a level of 
3 standard deviations worse. Thus, the variable of interest here, X, is 
equal to .51, the probability of a winning trade. The variable of interest 
need not always be for the probability of a win. It can be the probability 
of an event being in one of two mutually exclusive groups. We can now 
perform the first necessary equation in the test: 
(B.12) L = P-Z*((P*(1-P))/(N-1))^.5 

where 
L = The lower boundary for P to be at Z standard deviations. 
P = The variable of interest representing the probability of being in 

one of two mutually exclusive groups. 
Z = The selected number of standard deviations. N = The total 

number of events in the sample. 
Suppose our sample consisted of 100 plays. Thus: 
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L = .51-3*((.51*(1-.51))/(100-1))^.5  
= .51-3*((.51*.49)/99)^.5  
= .51-3*(.2499/99)^.5  
= .51-3*.0025242424^.5  
= .51-3*.05024183938  
= .51-.1507255181  
= .3592744819 

Based on our history of 100 plays which generated a 51% win rate, 
we can state that it would take a 3-sigma event for the population of 
plays (the future if we play an infinite number of times into the future) 
to have less than 35.92744819 percent winners. 

What kind of a confidence level does this represent? That is a func-
tion of N, the total number of plays in the sample. We can determine the 
confidence level of achieving 35 or 36 wins in 100 tosses by Equation 
(B.09). However, (B.09) is clumsy to work with as N gets large because 
of all of the factorial functions in (B.09). Fortunately, the Normal distri-
bution, Equation (3.21) for 1-tailed probabilities, can be used as a very 
close approximation for the Binomial probabilities. In the case of our 
example, using Equation (3.21), 3 standard deviations translates into a 
99.865% confidence. Thus, if we were to play this gambling system 
over an infinite number of times, we could be 99.865% sure that the 
percentage of wins would be greater than or equal to 35.92744819%. 

This technique can also be used for statistical validation of trading 
systems. However, this method is only valid when the following as-
sumptions are true. First, the N events (trades) are all independent and 
randomly selected. This can easily be verified for any trading system. 
Second, the N events (trades) can all be classified into two mutually 
exclusive groups (wins and losses, trades greater than or less than the 
median trade, etc.). This assumption, too, can easily be satisfied. The 
third assumption is that the probability of an event being classified into 
one of the two mutually exclusive groups is constant from one event to 
the next. This is not necessarily true in trading, and the technique be-
comes inaccurate to the degree that this assumption is false, Be that as it 
may, the technique still can have value for traders. 

Not only can it be used to determine the confidence level for a cer-
tain method being profitable, the technique can also be used to deter-
mine the confidence level for a given market indicator. For instance, if 
you have an indicator that will forecast the direction of the next day's 
close, you then have two mutually exclusive groups: correct forecasts, 
and incorrect forecasts. You can now express the reliability of your 
indicator to a certain confidence level. 

This technique can also be used to discern how many trials are nec-
essary for a system to be profitable to a given confidence level. For 
example, suppose we have a gambling system that wins 51% of the time 
on a game that pays 1 to 1. We want to know how many trials we must 
observe to be certain to a given confidence level that the system will be 
profitable in an asymptotic sense. Thus we can restate the problem as, 
"If the system wins 51% of the time, how many trials must I witness, 
and have it show a 51% win rate, to know that it will be profitable to a 
given confidence level?" 

Since the payoff is 1:1, the system must win in excess of 50% of the 
time to be considered profitable. Let's say we want the given confidence 
level to again be 99.865, or 3 standard deviations (although we are using 
3 standard deviations in this discussion, we aren't restricted to that 
amount; we can use any number of standard deviations that we want). 
How many trials must we now witness to be 99.865% confident that at 
least 51% of the trials will be winners? 

If .51-X = .5, then X = .01, Therefore, the right factors of Equation 
(B.12), Z*((P*(1-P))/(N-1))^.5, must equal .01. Since Z = 3 in this case, 
and .01/3 = .0033, then: 
((P*(1-P))/(N-1))^.5 = .0033  

We know that P equals .51, thus: 
((.51*(1-.51))/(N-1))^.5 = .0033 

Squaring both sides gives us: 
((.51*(l-.51))/(N-1)) = .00001111 

To continue: 
(.51*.49)/(N-1) = .00001111 .2499/(N-1)  
= .00001111 .2499/.00001111  
= N-1 .2499/.00001111+1  

= N 22,491+1 = N 
N = 22,492 

Thus, we need to witness a 51% win rate over 22,492 trials to be 
99.865% certain that we will see at least 51% wins. 

THE GEOMETRIC DISTRIBUTION 
Like the Binomial, the Geometric Distribution, also a discrete dis-

tribution, occurs as a result of N independent Bernoulli trials. The Geo-
metric Distribution measures the number of trials before the first success 
(or failure). The probability density function, N'(X), is: 
(B.13) N'(X) = Q ^ (X- 1)*P 

where 
P = The probability of success for a given trial. 
Q = The probability of failure for a given trial. 
In other words, N'(X) here measures the number of trials until the 

first success. The cumulative density function for the Geometric is 
therefore: 
(B.14) N(X) = ∑[J = 1,X] Q^(J-1)*P 

where 
P = The probability of success for a given trial. 
Q = The probability of failure for a given trial. 
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Figure B-7 Probability density functions for the Geometric Distribution 
(P = .6). 
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Figure B-8 Cumulative probability functions for the Geometric Distri-
bution (P = .6). 

Figures B-7 and B-8 illustrate the probability density and cumula-
tive probability (i.e., cdf) respectively of the Geometric Distribution. 
Other properties of the Geometric are: 
(B.15) Mean = 1/P (B.16) Variance = Q/P^2 

where 
P = The probability of success for a given trial. 
Q = The probability of failure for a given trial. 
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Suppose we are discussing tossing a single die. If we are talking 
about having the outcome of 5, how many times will we have to toss the 
die, on average, to achieve this outcome? The mean of the Geometric 
Distribution tells us this. If we know the probability of throwing a 5 is 
1/6 (.1667) then the mean is 1/.1667 = 6. Thus we would expect, on 
average, to toss a die six times in order to get a 5. If we kept repeating 
this process and recorded how many tosses it took until a 5 appeared, 
plotting these results would yield the Geometric Distribution function 
formulated in (B.13). 

THE HYPERGEOMETRIC DISTRIBUTION 
Another type of discrete distribution related to the preceding distri-

butions is termed the Hypergeometric Distribution. Recall that in the 
Binomial Distribution it is assumed that each draw in succession from 
the population has the same probabilities. That is, suppose we have a 
deck of 52 cards. 26 of these cards are black and 26 are red. If we draw 
a card and record whether it is black or red, we then put the card back 
into the deck for the next draw. This "sampling with replacement" is 
what the Binomial Distribution assumes. Now for the next draw, there is 
still a .5 (26/52) probability of the next card being black (or red). 

The Hypergeometric Distribution assumes almost the same thing, 
except there is no replacement after sampling. Suppose we draw the first 
card and it is red, and we do not replace it back into the deck. Now, the 
probability of the next draw being red is reduced to 25/51 or 
.4901960784. In the Hypergeometric Distribution there is dependency, 
in that the probabilities of the next event are dependent on the out-
come(s) of the prior event(s). Contrast this to the Binomial Distribution, 
where an event is independent of the outcome(s) of the prior event(s). 

The basic functions N'(X) and N(X) of the Hypergeometric are the 
same as those for the Binomial, (B.07) and (B.09) respectively, except 
that with the Hypergeometric the variable P, the probability of success 
on a single trial, changes from one trial to the next. 

It is interesting to note the relationship between the Hypergeometric 
and Binomial Distributions. As N becomes larger, the differences be-
tween the computed probabilities of the Hypergeometric and the Bino-
mial draw closer to each other. Thus we can state that as N approaches 
infinity, the Hypergeometric approaches the Binomial as a limit. 

If you want to use the Binomial probabilities as an approximation of 
the Hypergeometric, as the Binomial is far easier to compute, how big 
must the population be? It is not easy to state with any certainty, since 
the desired accuracy of the result will determine whether the approxima-
tion is successful or not. Generally, though, a population to sample size 
of 100 to 1 is usually sufficient to permit approximating the Hyper-
geometric with the Binomial. 

THE POISSON DISTRIBUTION 
The Poisson Distribution is another important discrete distribution. 

This distribution is used to model arrival distributions and other seem-
ingly random events that occur repeatedly yet haphazardly. These events 
can occur at points in time or at points along a wire or line (one dimen-
sion), along a plane (two dimensions), or in any N-dimensional con-
struct. Figure B-9 shows the arrival of events (the X's) along a line, or in 
time. 

 
The Poisson Distribution was originally developed to model incom-

ing telephone calls to a switchboard. Other typical situations that can be 
modeled by the Poisson are the breakdown of a piece of equipment, the 
completion of a repair job by a steadily working repairman, a typing 
error, the growth of a colony of bacteria on a Petri plate, a defect in a 
long ribbon or chain, and so on. 

The main difference between the Poisson and the Binomial distribu-
tions is that the Binomial is not appropriate for events that can occur 
more than once within a given time frame. Such an example might be 
the probability of an automobile accident over the next 6 months. In the 
Binomial we would be working with two distinct cases: Either an acci-
dent occurs, with probability P, or it does not, with probability Q (i.e., 1-
P). However, in the Poisson Distribution we can also account for the 
fact that more than one accident can occur in this time period. 

The probability density function of the Poisson, N'(X), is given by: 
(B.17) N'(X) = (L^X*EXP(-L))/X! 

where 
L = The parameter of the distribution. 
EXP() = The exponential function. 
Note that X must take discrete values. 
Suppose that calls to a switchboard average four calls per minute (L 

= 4). The probability of three calls (X = 3) arriving in the next minute 
are: 
N'(3) = (4^3*EXP(-4))/3!  
= (64*EXP(-4))/(3*2)  
= (64*.01831564)/6  
= 1.17220096/6  
= .1953668267 

So we can say there is about a 19.5% chance of getting 3 calls in the 
next minute. Note that this is not cumulative-that is, this is not the prob-
ability of getting 3 calls or fewer, it is the probability of getting exactly 
3 calls. If we wanted to know the probability of getting 3 calls or fewer 
we would have had to use the N(3) formula [which is given in (B.20)]. 

Other properties of the Poisson Distribution are: 
(B.18) Mean = L (B.10) Variance = L 

where 
L = The parameter of the distribution. 
In the Poisson Distribution, both the mean and the variance equal 

the parameter L. Therefore, in our example case we can say that the 
mean is 4 calls and the variance is 4 calls (or, the standard deviation is 2 
calls-the square root of the variance, 4). 

When this parameter, L, is small, the distribution is shaped like a 
reversed J, and when L is large, the distribution is not dissimilar to the 
Binomial. Actually, the Poisson is the limiting form of the Binomial as 
N approaches infinity and P approaches 0. Figures B-10 through B-13 
show the Poisson Distribution with parameter values of .5 and 4.5. 
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Figure B-10 Probability density functions for the Poisson Distribution 
(L = .5). 
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Figure B-11 Cumulative probability functions for the Poisson Distribu-
tion (L = .5). 
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Figure B-12 Probability density functions for the Poisson Distribution 
(L = 4.5). 
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Figure B-13 Cumulative probability functions for the Poisson Distribu-
tion (L = 4.5). 

The cumulative density function of the Poisson, N(X), is given by: 
(B.20) N(X) = ∑[J = 0,X] (L^J*EXP(-L))/J! 

where 
L = The parameter of the distribution. 
EXP() = The exponential function. 

THE EXPONENTIAL DISTRIBUTION 
Related to the Poisson Distribution is a continuous distribution with 

a wide utility called the Exponential Distribution, sometimes also re-
ferred to as the Negative Exponential Distribution. This distribution is 
used to model interarrival times in queuing systems, service times on 
equipment, and sudden, unexpected failures such as equipment failures 
due to manufacturing defects, light bulbs burning out, the time that it 
takes for a radioactive particle to decay, and so on. (There is a very in-
teresting relationship between the Exponential and the Poisson distribu-
tions. The arrival of calls to a queuing system follows a Poisson Distri-
bution, with arrival rate L. The interarrival distribution (the time be-
tween the arrivals) is Exponential with parameter 1/L.) 

The probability density function N'(X) for the Exponential Distribu-
tion is given as: 
(B.21) N'(X) = A*EXP(-A*X) 

where 
A = The single parametric input, equal to 1/L in the Poisson Distri-

bution. A must be greater than 0. 
EXP() = The exponential function. 
The integral of (B.21), N(X), the cumulative density function for the 

Exponential Distribution is given as: 

(B.22) N(X) = 1-EXP(-A*X) 
where 
A = The single parametric input, equal to 1/L in the Poisson Distri-

bution. A must be greater than 0. 
EXP() = The exponential function. 
Figures B-14 and B-15 show the functions of the Exponential Dis-

tribution. Note that once you know A, the distribution is completely 
determined. 
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Figure B-14 Probability density functions for the Exponential Distribu-
tion (A = 1). 
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Figure B-15 Cumulative probability functions for the Exponential Dis-
tribution (A = 1). 

The mean and variance of the Exponential Distribution are: 
(B.23) Mean = 1/A (B.24) Variance = 1/A^2 

Again A is the single parametric input, equal to 1/L in the Poisson 
Distribution, and must be greater than 0. 

Another interesting quality about the Exponential Distribution is 
that it has what is known as the "forgetfulness property." In terms of a 
telephone switchboard, this property states that the probability of a call 
in a given time interval is not affected by the fact that no calls may have 
taken place in the preceding interval(s). 

THE CHI-SQUARE DISTRIBUTION 
A distribution that is used extensively in goodness-of-fit testing is 

the Chi-Square Distribution (pronounced ki square, from the Greek 
letter X (chi) and hence often represented as the X2 distribution). Ap-
pendix A shows how to perform the chi-square test to determine how 
alike or unalike two different distributions are. 

Assume that K is a standard normal random variable (i.e., it has 
mean 0 and variance 1). If we say that K equals the square root of J (J = 
K^2), then we know that K will be a continuous random variable. How-
ever, we know that K will not be less than zero, so its density function 
will differ from the Normal. The Chi-Square Distribution gives us the 
density function of K: 
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(B.27) N'(K) = (K ^ ((V/2)-1)*EXP(-V/2))/(2 ^ (V/2)*GAM(V/2)) 
where 
K = The chi-square variable X2. 
V = The number of degrees of freedom, which is the single input 

parameter. 
EXP() = The exponential function. GAM() = The standard gamma 

function. 
A few notes on the gamma function are in order. This function has 

the following properties: 
5. GAM(0) = 1 
6. GAM( 1/2) = The square root of pi, or 1.772453851 
7. GAM(N) = (N-1)*GAM(N-1); therefore, if N is an integer, GAM(N) 
= (N-1)! 

Notice in Equation (B.25) that the only input parameter is V, the 
number of degrees of freedom. Suppose that rather than just taking one 
independent random variable squared (K^2), we take M independent 
random variables squared, and take their sum: 
JM = K1^2+K2^2 ... KM^2 

Now JM is said to have the Chi-Square Distribution with M degrees 
of freedom. It is the number of degrees of freedom that determines the 
shape of a particular Chi-Square Distribution. When there is one degree 
of freedom, the distribution is severely asymmetric and resembles the 
Exponential Distribution (with A = 1). At two degrees of freedom the 
distribution begins to look like a straight line going down and to the 
right, with just a slight concavity to it. At three degrees of freedom, a 
convexity starts taking shape and we begin to have a unimodal-shaped 
distribution. As the number of degrees of freedom increases, the density 
function gradually becomes more and more symmetric. As the number 
of degrees of freedom becomes very large, the Chi-Square Distribution 
begins to resemble the Normal Distribution per The Central Limit Theo-
rem. 

THE STUDENT'S DISTRIBUTION 
The Student's Distribution, sometimes called the t Distribution or 

Student's t, is another important distribution used in hypothesis testing 
that is related to the Normal Distribution. When you are working with 
less than 30 samples of a near-Normally distributed population, the 
Normal Distribution can no longer be accurately used. Instead, you must 
use the Student's Distribution. This is a symmetrical distribution with 
one parametric input, again the degrees of freedom. The degrees of free-
dom usually equals the number of elements in a sample minus one (N-
1). 

The shape of this distribution closely resembles the Normal except 
that the tails are thicker and the peak of the distribution is lower. As the 
number of degrees of freedom approaches infinity, this distribution ap-
proaches the Normal in that the tails lower and the peak increases to 
resemble the Normal Distribution. When there is one degree of freedom, 
the tails are at their thickest and the peak at its smallest. At this point, 
the distribution is called Cauchy. 

It is interesting that if there is only one degree of freedom, then the 
mean of this distribution is said not to exist. If there is more than one 
degree of freedom, then the mean does exist and is equal to zero, since 
the distribution is symmetrical about zero. The variance of the Student's 
Distribution is infinite if there are fewer than three degrees of freedom. 

The concept of infinite variance is really quite simple. Suppose we 
measure the variance in daily closing prices for a particular stock for the 
last month. We record that value. Now we measure the variance in daily 
closing prices for that stock for the next year and record that value. 
Generally, it will be greater than our first value, of simply last month's 
variance. Now let's go back over the last 5 years and measure the vari-
ance in daily closing prices. Again, the variance has gotten larger. The 
farther back we go-that is, the more data we incorporate into our meas-
urement of variance-the greater the variance becomes. Thus, the vari-
ance increases without bound as the size of the sample increases. This is 
infinite variance. The distribution of the log of daily price changes ap-
pears to have infinite variance, and thus the Student's Distribution is 
sometimes used to model the log of price changes. (That is, if C0 is to-
day's close and C1 yesterday's close, then ln(C0/C1) will give us a value 
symmetrical about 0. The distribution of these values is sometimes 
modeled by the Student's distribution). 

If there are three or more degrees of freedom, then the variance is 
finite and is equal to: 
(B.26) Variance = V/ (V-2) for V>2 
(B.27) Mean = 0 for V>1 

where 
V = The degrees of freedom. 
Suppose we have two independent random variables. The first of 

these, Z, is standard normal (mean of 0 and variance of 1). The second 
of these, which we call J, is Chi-Square distributed with V degrees of 
freedom. We can now say that the variable T, equal to Z/(J/V), is dis-
tributed according to the Student's Distribution. We can also say that the 
variable T will follow the Student's Distribution with N-1 degrees of 
freedom if: 
T = N^(1/2)*((X-U)/S) 

where 
X = A sample mean. 
S = A sample standard deviation, 
N = The size of a sample. 
U = The population mean. 
The probability density function for the Student's Distribution, 

N'(X), is given as: 
(B.28) N'(X) = 
(GAM((V+1)/2)/(((V*P)^(1/2))*GAM(V/2)))*((1+((X^2)/V))^(-
(V+1)/2)) 

where 
P = pi, or 3.1415926536. 
V = The degrees of freedom. 
GAM() = The standard gamma function. 
The mathematics of the Student's Distribution are related to the in-

complete beta function. Since we aren't going to plunge into functions of 
mathematical physics such as the incomplete beta function, we will 
leave the Student's Distribution at this point. Before we do, however, 
you still need to know how to calculate probabilities associated with the 
Student's Distribution for a given number of standard units (Z score) and 
degrees of freedom. You can use published tables to find these values. 
Yet, if you're as averse to tables as I am, you can simply use the follow-
ing snippet of BASIC code to discern the probabilities. You'll note that 
as the degrees of freedom variable, DEGFDM, approaches infinity, the 
values returned, the probabilities, converge to the Normal as given by 
Equation (3.22): 
1000 REM 2 TAIL PROBABILITIES ASSOCIATED WITH THE 
STUDENT'S T DISTRIBUTION 
1010 REM INPUT ZSCORE AND DEGFDM, OUTPUTS CF 
1020 ST = ABS(ZSCORE):R8 = ATN(ST/SQR(DEGFDM)):RC8 
 = COS(R8):X8 = 1:R28 = RC8*RC8:RS8 = SIN(R8) 
1030 IF DEGFDM MOD 2 = 0 THEN 1080 
1040 IF DEGFDM = 1 THEN Y8 = R8:GOTO 1070 
1050 Y8 = RC8:FOR Z8 = 3 TO (DEGFDM-2) STEP 2:X8 
 = X8*R28*(Z8-1)/Z8:Y8 = Y8+X8*RC8:NEXT 
1060 Y8 = R8+RS8*Y8 
1070 CF = Y8*.6366197723657157#:GOT01100 
1080 Y8 = 1 :FOR Z8 = 2 TO (DEGFDM-2) STEP 2:X8 = X8* R28 
* (Z8-1)/Z8:Y8 = Y8+X8:NEXT 
1090 CF = Y8*RS8 
1100 PRINT CF 

Next we come to another distribution, related to the Chi-Square Dis-
tribution, that also has important uses in statistics. The F Distribution, 
sometimes referred to as Snedecor's Distribution or Snedecor's F, is 
useful in hypothesis testing. Let A and B be independent chi-square 
random variables with degrees of freedom of M and N respectively. 
Now the random variable: 
F = (A/M)/(B/N) 

Can be said to have the F Distribution with M and N degrees of 
freedom. The density function, N'(X), of the F Distribution is given as: 
(B.29) N'(X) = 
(GAM((M+N)/2)*((M/N)^(M/2)))/(GAM(M/2)*GAM(N/2)*((1+M/N)^
((M+N)/2))) 

where 
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M = The number of degrees of freedom of the first parameter. 
N = The number of degrees of freedom of the second parameter. 
GAM() = The standard gamma function. 

THE MULTINOMIAL DISTRIBUTION 
The Multinomial Distribution is related to the Binomial, and like-

wise is a discrete distribution. Unlike the Binomial, which assumes two 
possible outcomes for an event, the Multinomial assumes that there are 
M different outcomes for each trial. The probability density function, 
N'(X), is given as: 
(B.30) N'(X) = (N!/(∏[i = 1,M] Ni!))*∏[i = 1,M] Pi^Ni 

where 
N = The total number of trials. 
Ni = The number of times the ith trial occurs. 
Pi = The probability that outcome number i will be the result of any 

one trial. The summation of all Pi's equals 1. 
M = The number of possible outcomes on each trial. 
For example, consider a single die where there are 6 possible out-

comes on any given roll (M = 6). What is the probability of rolling a 1 
once, a 2 twice, and a 3 three times out of 10 rolls of a fair die? The 
probabilities of rolling a 1, a 2 or a 3 are each 1/6. We must consider a 
fourth alternative to keep the sum of the probabilities equal to 1, and 
that is the probability of not rolling a 1, 2, or 3, which is 3/6. Therefore, 
P1 = P2 = P3 = 1/6, and P4 = 3/6. Also, N1 = 1, N2 = 2, N3 = 3, and N4 = 
10 • 3-2-1 = 4. Therefore, Equation (B.30) can be worked through as: 
N'(X) = (10!/(1!*2!*3!*4!))*(1/6)^1*(1/6)^2*(1/6)^3*(3/6) 4  
= (3628800/(1*2*6*24))*.1667*.0278*.00463*.0625  
= (3628800/288)*.000001341  
= 12600*.000001341  
= .0168966 

Note that this is the probability of rolling exactly a 1 once, a 2 
twice, and a 3 three times, not the cumulative density. This is a type of 
distribution that uses more than one random variable, hence its cumula-
tive density cannot be drawn out nicely and neatly in two dimensions as 
you could with the other distributions discussed thus far. We will not be 
working with other distributions that have more than one random vari-
able, but you should be aware that such distributions and their functions 
do exist. 

THE STABLE PARETIAN DISTRIBUTION 
The stable Paretian Distribution is actually an entire class of distri-

butions, sometimes referred to as "Pareto-Levy" distributions. The prob-
ability density function N'(U) is given as: 
(B.31) ln(N'(U)) = i*D*U-V*abs(U)^A*Z 

where  
U = The variable of the stable distribution. 
A = The kurtosis parameter of the distribution. 
B = The skewness parameter of the distribution. 
D = The location parameter of the distribution. 
V = This is also called the scale parameter, i = The imaginary unit, -

1^(1/2) 
Z = 1 -i*B*(U/ASS(U))*tan(A*3.1415926536/2) when A >< 1 and 
1+i*B*(U⁄ASS(U))*2/3.1415926536*log(ABS(U)) when A = 1. 

ABS() = The absolute value function. tan() = The tangent function. 
ln() = The natural logarithm function. 

The limits on the parameters of Equation (B.31) are: (B.32) 0<A<= 
2 (B.33) -1 <= B <= 1 (B.34) 0<= V 

The four parameters of the distribution-A, B, D, and V-allow the 
distribution to assume a great many different shapes. 

The variable A measures the height of the tails of the distribution. 
Thus, we can say that A represents the kurtosis variable of the distribu-
tion. A is also called the characteristic exponent of the distribution. 
When A equals 2, the distribution is Normal, and when A equals 1 the 
distribution is Cauchy. For values of A that are less than 2, the tails of 
the distribution are higher than with the Normal Distribution. The total 
probability in the tails increases as A decreases. When A is less than 2, 

the variance is infinite. The mean of the distribution exists only if A is 
greater than 1. 

The variable B is the index of skewness. When B equals zero, the 
distribution is perfectly symmetrical. The degree of skewness is larger 
the larger the absolute value of B. Notice that when A equals 2, W(U,A) 
equals 0, hence B has no effect on the distribution. In this case, when A 
equals 2, no matter what B is we still have the perfectly symmetrical 
Normal Distribution. The scale parameter, V, is sometimes written as a 
function of A, in that V = C^A, therefore C = V^(1/A). When A equals 
2, V is one-half the variance. When A equals 1, the Cauchy Distribution, 
V is equal to the semi-interquartile range. D is the locution parameter. 
When A is equal to 2, the arithmetic mean is an unbiased estimator of D; 
when A is equal to 1, the median is. 

The cumulative density functions for the stable Paretian are not 
known to exist in closed form. For this reason, evaluation of the parame-
ters of this distribution is complex, and work with this distribution is 
made more difficult. It is interesting to note that the stable Paretian pa-
rameters A, B, C, and D correspond to the fourth, third, second, and first 
moments of the distribution respectively. This gives the stable Paretian 
the power to model many types of real-life distributions-in particular, 
those where the tails of the distribution are thicker than they would be in 
the Normal, or those with infinite variance (i.e., when A is less than 2). 
For these reasons, the stable Paretian is an extremely powerful distribu-
tion with applications in economics and the social sciences, where data 
distributions often have those characteristics (fatter tails and infinite 
variance) that the stable Paretian addresses. 

This infinite variance characteristic makes the Central Limit Theo-
rem inapplicable to data that is distributed per the stable Paretian distri-
bution when A is less than 2. This is a very important fact if you plan on 
using the Central Limit Theorem. 

One of the major characteristics of the stable Paretian is that it is in-
variant under addition. This means that the sum of independent stable 
variables with characteristic exponent A will be stable, with approxi-
mately the same characteristic exponent. Thus we have the Generalized 
Central Limit Theorem, which is essentially the Central Limit Theorem, 
except that the limiting form of the distribution is the stable Paretian 
rather than the Normal, and the theorem applies even when the data has 
infinite variance (i.e., A < 2), which is when the Central Limit Theorem 
does not apply. For example, the heights of people have finite variance. 
Thus we could model the heights of people with the Normal Distribu-
tion. The distribution of people's incomes, however, does not have finite 
variance and is therefore modeled by the stable Paretian distribution 
rather than the Normal Distribution. 

It is because of this Generalized Central Limit Theorem that the sta-
ble Paretian Distribution is believed by many to be representative of the 
distribution of price changes.1 

There are many more probability distributions that we could still 
cover (Negative Binomial Distribution, Gamma Distribution, Beta Dis-
tribution, etc.); however, they become increasingly more obscure as we 
continue from here. The distributions we have covered thus far are, by 
and large, the main common probability distributions. 

Efforts have been made to catalogue the many known probability 
distributions. Undeniably, one of the better efforts in this regard has 
been done by Karl Pearson, but perhaps the most comprehensive work 
done on cataloguing the many known probability distributions has been 
presented by Frank Haight.2 Haight's "Index" covers almost all of the 
known distributions on which information was published prior to Janu-
ary, 1958. Haight lists most of the mathematical functions associated 
with most of the distributions. More important, references to books and 
articles are given so that a user of the index can find what publications 
to consult for more in-depth matter on the particular distribution of in-
terest. Haight's index categorizes distributions into ten basic types: 
1. Normal 
2. Type III 
3. Binomial 
                                                                 
1 Do not confuse the stable Paretian Distribution with our adjustable distribution 
discussed in Chapter 4. The stable Paretian is a real distribution because it models 
a probability phenomenon. Our adjustable distribution does not. Rather, it models 
other (Z-dimensional) probability distributions, such as the stable Paretian. 
2 Haight, F. A., "Index to the Distributions of Mathematical Statistics," Journal of 
Research of the National Bureau of Standards-B. Mathematics and Mathematical 
Physics 65 B No. 1, pp. 23-60, Januaiy-March 1961. 
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4. Discrete 
5. Distributions on (A, B) 
6. Distributions on (0, infinity) 
7. Distributions on (-infinity, infinity) 
8. Miscellaneous Univariate 
9. Miscellaneous Bivariate 
10. Miscellaneous Multivariate 

Of the distributions we have covered in this Appendix, the Chi-
Square and Exponential (Negative Exponential) are categorized by 
Haight as Type III. The Binomial, Geometric, and Bernoulli are catego-
rized as Binomial. The Poisson and Hypergeometric are categorized as 
Discrete. The Rectangular is under Distributions on (A, B), the F Distri-
bution as well as the Pareto are under Distributions on (0, infinity), the 
Student's Distribution is regarded as a Distribution on (-infinity, infin-
ity), and the 

Multinomial as a Miscellaneous Multivariate. It should also be 
noted that not all distributions fit cleanly into one of these ten catego-
ries, as some distributions can actually be considered subclasses of oth-
ers. For instance, the Student's distribution is catalogued as a Distribu-
tion on (-infinity, infinity), yet the Normal can be considered a subclass 
of the Student's, and the Normal is given its own category entirely. As 
you can see, there really isn't any "clean" way to categorize distribu-
tions. However, Haight's index is quite thorough. Readers interested in 
learning more about the different types of distributions should consult 
Haight as a starting point. 
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APPENDIX C - Further on Dependency: 
The Turning Points and Phase Length 
Tests 

There exist statistical tests of dependence other than those men-
tioned in Portfolio Management Formulas and reiterated in Chapter 1. 
The turning points test is an altogether different test for dependency. 
Going through the stream of trades, a turning point is counted if a trade 
is for a greater P&L value than both the trade before it and the trade 
after it. A trade can also be counted as a turning point if it is for a lesser 
P&L value than both the trade before it and the trade after it. Notice that 
we are using the individual trades, not the equity curve (the cumulative 
values of the trades). The number of turning points is totaled up for the 
entire stream of trades. Note that we must start with the second trade 
and end with the next to last trade, as we need a trade on either side of 
the trade we are considering as a turning point. 

Consider now three values (1, 2, 3) in a random series, whereby 
each of the six possible orderings are equally likely: 

1, 2, 3 2, 3,1 1, 3, 2 3, 1,2 2, 1,3 3, 2, 1 
Of these six, four will result in a turning point. Thus, for a random 

stream of trades, the expected number of turning points is given as: 
(C.01) Expected number of turning points = 2/3*(N-2) where N = The 
total number of trades. 

We can derive the variance in the number of turning points of a ran-
dom series as: 
(C.02) Variance = (16*N-29)/90 

The standard deviation is the square root of the variance. Taking the 
difference between the actual number of turning points counted in the 
stream of trades and the expected number and then dividing the differ-
ence by the standard deviation will give us a Z score, which is then ex-
pressed as a confidence limit. The confidence limit is discerned from 
Equation (3.22) for 2-tailed Normal probabilities. Thus, if our stream of 
trades is very far away (very many standard deviations from the ex-
pected number), it is unlikely that our stream of trades is random; rather, 
dependency is present. If dependency appears to a high confidence limit 
(at least 95%) with the turning points test, you can determine from in-
spection whether like begets like (if there are fewer actual turning points 
than expected) or whether like begets unlike (if there are more actual 
turning points than-expected). 

Another test for dependence is the phase length test. This is a statis-
tical test similar to the turning points test. Rather than counting up the 
number of turning points between (but not including) trade 1 and the last 
trade, the phase length test looks at how many trades have elapsed be-
tween turning points. A "phase" is the number of trades that elapse be-
tween a turning point high and a turning point low, or a turning point 
low and a turning point high. It doesn't matter which occurs first, the 
high turning point or the low turning point. Thus, if trade number 4 is a 
turning point (high or low) and trade number 5 is a turning point (high 
or low, so long as it's the opposite of what the last turning point was), 
then the phase length is 1, since the difference between 5 and 4 is 1. 

With the phase length test you add up the number of phases of 
length 1, 2, and 3 or more. Therefore, you will have 3 categories: 1, 2, 
and 3+. Thus, phase lengths of 4 or 5, and so on, are all totaled under the 
group of 3+. It doesn't matter if a phase goes from a high turning point 
to a low turning point or from a low turning point to a high turning 
point; the only thing that matters is how many trades the phase is com-
prised of. To figure the phase length, simply take the trade number of 
the latter phase (what number it is in sequence from 1 to N, where N is 
the total number of trades) and subtract the trade number of the prior 
phase. For each of the three categories you will have the total number of 
complete phases that occurred between (but not including) the first and 
the last trades. 

Each of these three categories also has an expected number of trades 
for that category. The expected number of trades-of phase length D is: 
(C.03) E(D) = 2*(N-D-2)*(D^2*3*D+1)/(D+3)! 

where  
D = The length of the phase. 
E(D) = The expected number of counts. 
N = The total number of trades. 

Once you have calculated the expected number of counts for the 
three categories of phase length (1, 2, and 3+), you can perform the chi-
square test. According to Kendall and colleagues,1 you should use 2.5 
degrees of freedom here in determining the significance levels, as the 
lengths of the phases are not independent. Remember that the phase 
length test doesn't tell you about the dependence (like begetting like, 
etc.), but rather whether or not there is dependence or randomness. 

Lastly, this discussion of dependence addresses converting a corre-
lation coefficient to a confidence limit. The technique employs what is 
known as fisher's Z transformation, which converts/a correlation coef-
ficient, r, to a Normally distributed variable: 
(C.04) F = .5*ln((1+r)/(l-r)) 

where 
F = The transformed variable, now Normally distributed. 
r = The correlation coefficient of the sample. 
ln() = The natural logarithm function. 
The distribution of these transformed variables will have a variance 

of: 
(C.05) V = 1/(N-3) 

where 
V = The variance of the transformed variables. 
N = The number of elements in the sample. 
The mean of the distribution of these transformed variables is dis-

cerned by Equation (C.04), only instead of being the correlation coeffi-
cient of the sample, r is the correlation coefficient of the population. 
Thus, since our population has a correlation coefficient of 0 (which we 
assume, since we are testing deviation from randomness) then Equation 
(C.04) gives us a value of 0 for the mean of the population. 

Now we can determine how many standard deviations the adjusted 
variable is from the mean by dividing the adjusted variable by the 
square root of the variance, Equation (C.05). The result is the Z score 
associated with a given correlation coefficient and sample size. For ex-
ample, suppose we had a correlation coefficient of .25, and this was 
discerned over 100 trades. Thus, we can find our Z score as Equation 
(C.04) divided by the square root of Equation (C.05), or: 
(C.06) Z = (.5*ln((1+r)/(1-r)))/(l/(N-3))^.5  

Which, for our example is: 
Z = (.5*ln((l+.25)/(l-.25)))/(l/(100-3))^.5  
= (.5*ln(1.25/.75))/(l/97)^.5  
= (.5*ln(1.6667))/.010309^.5  
= (.5*.51085)/.1015346165  
= .25541275/.1015346165  
= 2.515523856 

Now we can translate this into a confidence limit by using Equation 
(3.22) for a Normal Distribution e-tailed confidence limit. For our ex-
ample this works out to a confidence limit in excess of 98.8%. If we had 
had 30 trades or less, we would have had to discern our confidence limit 
by using the Student's Distribution with N-1 degrees of freedom. 

                                                                 
1 Kendall, M. G., A. Stuart, and J. K. Ord. The Advanced Theory of Statistics, 
Vol. III. New York: Hafner Publishing, 1983. 
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